
Empir Software Eng (2018) 23:2550–2596
https://doi.org/10.1007/s10664-017-9555-8

Large-scale agile transformation at Ericsson: a case study

Maria Paasivaara1 ·Benjamin Behm1 ·
Casper Lassenius1 ·Minna Hallikainen2

Published online: 11 January 2018
© The Author(s) 2018. This article is an open access publication

Abstract Many large organizations are adopting agile software development as part of
their continuous push towards higher flexibility and shorter lead times, yet few reports
on large-scale agile transformations are available in the literature. In this paper we report
how Ericsson introduced agile in a new R&D product development program developing a
XaaS platform and a related set of services, while simultaneously scaling it up aggressively.
The overarching goal for the R&D organization, distributed to five sites at two continents,
was to achieve continuous feature delivery. This single case study is based on 45 semi-
structured interviews during visits at four sites, and five observation sessions at three sites.
We describe how the organization experimented with different set-ups for their tens of
agile teams aiming for rapid end-to-end development: from component-based virtual teams
to totally cross-functional, cross-component, cross-site teams. Moreover, we discuss the
challenges the organization faced and how they mitigated them on their journey towards
continuous and rapid software engineering. We present four lessons learned for large-scale
agile transformations: 1) consider using an experimental approach to transformation, 2) con-
sider implementing the transformation step-wise in complex large-scale settings, 3) team
inter-changeability can be limited in a complex large-scale product — specialization might

Communicated by: Hakan Erdogmus

� Maria Paasivaara
Maria.Paasivaara@aalto.fi

Benjamin Behm
Benjamin.Behm@aalto.fi

Casper Lassenius
casper.lassenius@aalto.fi

Minna Hallikainen
minna.hallikainen@ericsson.com

1 Department of Computer Science, Aalto University, P.O. BOX 19210, FI-00076 Aalto, Finland

2 Oy LM Ericsson Ab, Hirsalantie 11, FI-02420 Kirkkonummi, Finland

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-017-9555-8&domain=pdf
http://orcid.org/0000-0003-4192-7024
mailto:Maria.Paasivaara@aalto.fi
mailto:Benjamin.Behm@aalto.fi
mailto:casper.lassenius@aalto.fi
mailto:minna.hallikainen@ericsson.com


Empir Software Eng (2018) 23:2550–2596 2551

be needed, and 4) not using a common agile framework for the whole organization, in com-
bination with insufficient common trainings and coaching may lead to a lack of common
direction in the agile implementation. Further in-depth case studies on large-scale agile
transformations, on customizing agile to large-scale settings, as well as on the use of scaling
frameworks are needed.

Keywords Agile software development · Large-scale agile · Adopting agile · Enterprise
agile · Scaling agile

1 Introduction

Increasing pressure to reduce cycle time, improve quality, and swiftly react to changes in
customer needs are driving companies, large and small, to adopt agile software develop-
ment (VersionOne 2016). Agile development can improve efficiency and quality (Livermore
2008a), and enable shorter lead times and a stronger focus on customer needs (Petersen and
Wohlin 2010).

Even though agile software development methods were originally designed for single,
small teams, during recent years, large organizations have increasingly adopted them (Hos-
sain et al. 2009; Larman and Vodde 2010; Leffingwell 2007). A recent systematic literature
review (Dikert et al. 2016) revealed the lack of systematically conducted studies on large
software development organizations adopting agile methods. The review identified only six
scientific studies on large scale agile transformations, as almost 90% of the included papers
were experience reports written by practitioners. According to the State of Agile Survey
(VersionOne 2016), 43% of the self-selected respondents worked in development organi-
zations having more than 50% of teams using agile, while only 4% of respondents stated
that none of their teams were agile, and 62% of almost 4000 respondents came from an
organization with over a hundred people in software development. While the survey is non-
scientific, and problematic from a methodological point of view (Stavru 2014), it is the
largest reoccurring survey on agile adoption, and it indicates that a significant number of big
organizations use agile. Moreover, practitioners at the XP conference in 2010 listed the topic
“Agile and large projects” as the number one top burning research question (Freudenberg
and Sharp 2010). In recent workshops on large-scale agile development, the introduction
of agile methods was one of the highlighted themes needing more research (Dingsøyr and
Moe 2013; 2014).

Large organizations often have big projects executed by large and distributed develop-
ment organizations, requiring agile methods to be scaled. According to (Leffingwell 2007),
scaling involves many challenges, including coordination between several agile teams, lack
of up-front architecture, lack of requirements analysis, as well as all the challenges of distri-
buted projects, as many large organizations are distributed. Despite these challenges, many
large companies have chosen to adopt agile methods, even though research on how to scale
agile methods to large-scale projects (Hossain et al. 2009), and on successfully conducting
agile transformations in large organizations is largely missing (Dikert et al. 2016).

The purpose of this paper is to start filling the gap in the literature on large-scale agile
transformations. We investigate how one large-scale R&D product development program
within Ericsson adopted agile methods at scale. We present the motivation for the transfor-
mation, the steps taken, the challenges encountered, as well as the mitigating actions taken
to tackle the challenges.



2552 Empir Software Eng (2018) 23:2550–2596

The case organization was a new R&D product development program at Ericsson devel-
oping a XaaS1 platform and a set of services. Ericsson’s customers, telecom operators, can
provide a number of services to their customers using the platform.

The development organization wanted to develop the capacity for continuous delivery
(Rodrı́guez et al. 2016). As a step towards that goal, the organization adopted agile methods
(Schwaber and Beedle 2002). The planning of the agile adoption started in late 2012 and the
full-scale roll-out took place during 2013. By spring 2014, the development organization
had grown from two team at the end of 2011 to 15 development teams, distributed to five
global sites. Thus, this can be viewed as a large-scale agile adoption according to the defini-
tion used in (Dikert et al. 2016), which states that large-scale agile is software development
organizations with 50 or more people or at least six teams.

In our previous work, we presented the initial results of the transformation (Paasivaara
et al. 2014a) and how the case organization had used Value Workshops as to facilitate organi-
zational alignment during the transformation (Paasivaara et al. 2014b). This paper elaborates
on and extends the previous papers by presenting an in-depth analysis of the case, including
an additional research question (RQ1), a more detailed description of the research method,
with an additional validation interview, a significantly extended results section going deeper
into the results, and a completely new discussion section.

The paper is structured as follows: Section 2 provides an overview of the previous lit-
erature, Section 3 describes the case background, research goals and methods, Section 4
presents our results, Section 5 discusses the results, and finally, Section 6 concludes the
paper.

2 Related Work

In this section we present relevant previous work. First, we explain what we mean by large-
scale agile software development, and why it is important to study. Second, we discuss why
large organizations are interested in large-scale agile, as well as challenges and success
factors of the transformations.

2.1 Large-Scale Agile Development

Agile methods were originally developed for small organizations, and despite success sto-
ries, large-scale application has proved challenging (Dybå and Dingsøyr 2008). Challenges
in large-scale agile adoptions relate partly to organizational size bringing inertia, which
slows down the change process (Livermore 2008b). Another challenge is the need to inter-
face with and integrate existing processes and organizational structures (Boehm and Turner
2005).

Agile methods focus largely on intra-team practices, which work well in small orga-
nizations. A challenge in large organizations is that it is necessary to coordinate and
communicate between several development teams, and also between different organiza-
tional units. Agile methods provide little guidance on how agile teams should interact with
the environment at large. Because of this, large organizations must tailor the methods to fit

1XaaS: “anything as a service” or “everything as a service” The acronym refers to an increasing number of
services that are delivered over the Internet rather than provided locally or on-site. (Banerjee et al. 2011)



Empir Software Eng (2018) 23:2550–2596 2553

their specific needs. As a consequence, practices requiring additional formal communication
may need to be put in place, which might reduce agility (Lindvall et al. 2004).

Large organizations are often globally distributed, which brings the need to apply agile
in distributed projects. During recent years agile practices have gained a foothold in global
software engineering projects, and there is evidence of benefits of agile use (Hanssen et al.
2011). However, agile methods are largely based on frequent internal and external collabo-
ration and communication (Highsmith and Cockburn 2001), and such close collaboration is
inherently challenging in global work, which complicates the use of Agile in global software
engineering (Hanssen et al. 2011). On the other hand, Agile has qualities that brings remedy
to the challenges caused by distance in global work. Suitable agile practices may bring dis-
tributed sites closer each other by improving coordination and communication (Holmstrom
et al. 2006).

During recent years frameworks for scaling agile software development have been sug-
gested by several consultants, e.g., the Scaled Agile Framework (SAFe) (Leffingwell 2015),
Large-Scale Scrum (LeSS) (Larman and Vodde 2015), and Disciplined Agile Delivery
(DAD) (Ambler 2012). However, documented experiences on the usage of these frame-
works is still scarce, e.g., how they are used, to what kind of circumstances they are best
suited, and what the challenges and success factors of their usage are. The State of Agile
Survey (VersionOne 2016) shows that a large number of companies seem to be using some
framework, as 27% of the respondents reported using SAFe, 6% LeSS and 4% DAD. In
addition, most respondents (72%) stated using Scrum or Scrum-of-Scrums to help to scale
(respondents could make multiple selections).

A recent systematic literature review on large-scale agile transformations (Dikert et al.
2016) reported that only six, or 12% of existing 52 reports were scientific. Most of the
selected papers were experience reports published in the XP and Agile conferences, showing
practitioner interest in the topic, and that academic research is lagging behind.

None of the scientific studies included in the systematic literature review by (Dikert et al.
2016) focused directly on the transformation process, even though they briefly described it.
Two of the papers (Abdelnour-Nocera and Sharp 2007; 2008) reporting on the same case
concentrated on the effects of the agile transformation. A study about Ericsson R&D Fin-
land (Rodrı́guez et al. 2013)2 focused on how Lean thinking is implemented, however the
focus was mostly on the current state instead of the transformation process. A paper from
Nokia Siemens Networks (Korhonen 2012) studied whether the visibility, reaction speed,
quality, or motivation had changed, comparing the situation before and after the transfor-
mation. (Murphy and Donnellan 2009) studied the good and bad aspects of communication
during an agile transformation and (Vlaanderen et al. 2012) in their multiple-case study of
two cases analyzed the Scrum introduction paths. While evaluating the relevance of each of
the research papers regarding how well they provide information on large-scale agile trans-
formations on scale a 1-5 (1: some sentences revealing factors relating to transformation,
5: the entire paper focuses on describing how the transformation proceeded). Dikert et al.
(2016) gave two of the papers (Abdelnour-Nocera and Sharp 2007; 2008) (reporting on the
same case) the rating 3, while the rest received only either 1 (one paper) or 2 (3 papers).
This reveals how the current research on large-scale agile transformations is lagging behind
the state-of-the practice.

2A different case project from ours



2554 Empir Software Eng (2018) 23:2550–2596

2.2 Motivation to Initiate an Agile Transformation

According to the literature one of the top reasons for a large software development organi-
zation to start an agile transformation was to reduce the time to market (Gat 2006; Goos and
Melisse 2008; McDowell and Dourambeis 2007; Prokhorenko 2012; Silva and Doss 2007),
as the competition and market situation was changing towards speedier deliveries (Greening
2013). Companies want to improve their competitiveness, or even fear that they are losing com-
petitiveness. Thus, their response is to improve delivery speed and responsiveness to change.

Another significant motivator was software project management related reasons. Many
companies had experienced problems related to project management (Long and Starr 2008),
people management, and managing schedules (Chung and Drummond 2009) that they were
hoping to correct.

The old process and the whole way of working was considered problematic due to over-
head, seen in extra bureaucracy causing needless costs in the form of unproductive meetings
(O’Connor 2011), process gates (Chung and Drummond 2009), change management over-
head (Vlaanderen et al. 2012) and excess documentation (Hansen and Baggesen 2009;
Murphy and Donnellan 2009). Slow processes with long cycle times led to late feedback
(Beavers 2007; Ranganath 2011).

2.3 Challenges and Success Factors of Large-Scale Agile Transformations

Any organizational transformation that involves numerous individuals will face challenges.
A systematic literature review (Dikert et al. 2016) identified 29 success factors for large-
scale agile transformations grouped into 11 categories and 35 challenges in 9 categories. The
review identified the following main challenges for large-scale agile transformations: other
functions unwilling to change (mentioned by 31% of the reported cases), lack of guidance
from the literature (21%), reverting to the old way of working (19%) and misunderstand-
ing agile concepts (19%). The top challenge categories mentioned were agile difficult
to implement, integrating non-development functions, change resistance and requirements
engineering challenges.

The most salient success factors identified were: coaching teams as they learn by doing
(29%), ensuring management support (29%) and customizing the agile approach carefully
(26%). The top success factor categories listed are: choosing and customizing the agile
approach, management support, mindset and alignment, and training and coaching.

The State of Agile Survey (VersionOne 2016) reports the following tips for large-scale
agile transformations: consistent process and practices (mentioned by 43% of respondents),
implementation of a common tool across teams (40%), agile consultants or trainers (40%),
executive sponsorship (37%), and internal agile support team (35%).

3 Methodology

3.1 Background

This paper uses a single case study methodology (Yin 2009) in a software development
organization at Ericsson developing a XaaS platform and a related set of services. We
subsequently refer to this whole as the “product”.

The product provides a set of services to business customers, who use it to provide ser-
vices to their clients. Originally, the platform was designed for a single customer. At the



Empir Software Eng (2018) 23:2550–2596 2555

time of our interviews, the product was in its early life-cycle with tens of customers, the
number of which was expected to grow rapidly, and the product was considered to have a
vast market potential.

Architecturally, the product consisted of modules, subsequently referred to as com-
ponents. Some components were developed by third-parties and some by Ericsson. The
development of the components required highly specialized expertise due to their complex-
ity.

Ericsson acquired the product in 2011. Before the acquisition, approximately 30–35 peo-
ple, including external contractors and consultants, developed the whole platform. As part
of the acquisition, Ericsson hired around ten domain experts from the previous development
organization and took over the further product development. Directly after the acquisi-
tion, the newly built organization had to focus on knowledge transfer from the external
consultants to Ericsson’s employees and to the newly hired consultants.

The development organization at Ericsson grew rapidly: from two teams at the end of
2011 to 10 teams in spring 2013 and 15 teams by the spring of 2014. New developers and
teams were added to the organization gradually. The biggest increases happened in late
2012 and during 2013. In the fall of 2012 an external consultancy provided personnel to the
project (at site E), and both internal and external recruiting was done. During the summer
and fall 2013, five agile teams were added to Site A, part of which were reassigned from
another project at Ericsson.

During this time, the size of organization increased from a few dozens to around 200. In
spring 2014 the development organization consisted of agile teams (typically consisting of
7-9 persons), Product Owners, architects, agile coaches, line managers, product managers
and other managers. In addition, the organization included sales personnel, and customer
support and operations.

At the time of our data collection (Fall 2013 - Fall 2014) the development organization
was distributed to five sites in three countries as illustrated in Fig. 1. Four of the sites were
in Europe (sites A, B, C, D) and one (site E) in Asia. Site E was a subcontracted site,
not Ericsson’s own. In addition, customer support and operations were located at a sixth
site (site F), which was not considered as part of the development organization, and was
therefore not included in this study.

After the acquisition, when moving the development to Ericsson, experts on specific
components were hired both internally and externally to several sites. As each component

Country Alpha
Europe

Site A Site B

Country Beta
Europe

Site C Site D

Country Gamma
Europe

Site F

Country Delta
Asia

Development Development

Operations & SupportDevelopment

Site E

External site
(consultants)

Internal site

Fig. 1 Project sites and distribution at the time of our data collection (Fall 2013 - Fall 2014)



2556 Empir Software Eng (2018) 23:2550–2596

required deep expertise, learning new components takes a lot of time. The competences for
each component were in many cases not located at a single site, but distributed to several
locations. Moreover, a single feature could span several components, requiring different
expertise to develop, see Fig. 2. Thus, matching features spanning several components to the
component-based competences located at different sites provided significant challenges for
rapid end-to-end development. This feature-component structure remained the same during
the transformation, even though the organization structure around was changed.

Ericsson has traditionally used a plan-driven software process. However, during recent
years the company started a global adoption of agile software development. The studied
organization started its transformation, or “the agile journey”, as they call it, in late 2012
and the first agile pilot team was formed in early 2013. This transition has been particu-
larly challenging, as the organizational growth has been significant and rapid during the
transformation, which is still ongoing.

3.2 Research Goals and Questions

Our research goal was to investigate how this large, globally distributed organization
reorganized its development and processes by taking agile methods into use.

We purposefully selected this information-rich case (Patton 1990), as we had the pos-
sibility to gain access based upon participation in a joint research program, and we had
previously studied another agile transformation in the same company (see (Paasivaara et al.
2013)), thus we knew that this case would provide us rich data on the studied phenomenon.
We selected a revelatory case (Yin 2009), which enabled us to study a yet unstudied phe-
nomenon. This case enabled us to study, over a longer period of time, how a large, globally
distributed organization developing a complex product takes agile into use, the steps of the
transformation, as well as challenges and mitigating actions. As discussed earlier, this is
a topic that has not been studied scientifically almost at all, thus we saw this as a unique
research opportunity. The case setting provided us with access to an industrial real case set-
ting in a rarely studied empirical context and allowed us to follow the transformation over a
period of time, thus proving us a unique dataset.

Fig. 2 Features vs. components

C
om

po
ne

nt
 1

C
om

po
ne

nt
 2

C
om

po
ne

nt
 3

C
om

po
ne

nt
 4

C
om

po
ne

nt
 5

Feature 1

Feature 5

Feature 3

Feature 4

Feature 2



Empir Software Eng (2018) 23:2550–2596 2557

We posed the following research questions:

RQ1: Why did the organization initiate an agile transformation?
RQ2: How did the transformation proceed?
RQ3: What challenges did the organization encounter?
RQ4: How did the organization mitigate the challenges?

3.3 Data Collection

The data collection took place between September 2013 and September 2014. We used three
sources of data: 1) interviews, 2) observations, and 3) company internal documents.

The first three authors collected the data together. The fourth author, a representative
of the organization, was our main contact person during the study, as well as one of the
key informants. She helped us select the interviewees and arranged access to the events we
observed. She also validated the findings of this paper by reading and commenting on the
paper draft. Figure 3 shows the data collection timeline.

3.3.1 Interviews

We conducted a total of 45 semi-structured interviews in three rounds: 1) 31 interviews on
the transformation journey, 2) twelve interviews on value workshops (which were one of
the major steps during the transformation journey described later on), and 3) two validation
interviews after analyzing the data.

The goal of the transformation interviews was to study the large-scale agile adoption.
During that first interview round we conducted 31 interviews of altogether 34 persons at
four sites.

S O N D J F M A M J J A S

2013 2014

Observation of CI 
roadshow at site 

A

12 interviews of Value 
Workshops (personel 

from sites A, C, D)

Observation of 
Value Workshop 

at site A

Observation of 
weekly demo at 

site C

9 interviews at 
site A

11 interviews 
at sites C (5) 

& D (6)

2 interviews at 
site B

9 interviews of sites 
C & D personnel 

visiting site A

Observation of 
Scrum practices 

at site A

J J A

Observation of 
Value Workshop 

at site D

2 validation 
interviews at site 

A

Feedback session 
at site A

= Interviews

= Observation

= Feedback session

Fig. 3 Timeline of the data collection



2558 Empir Software Eng (2018) 23:2550–2596

The roles of the interviewees included development team members (i.e., members of
agile teams such as developers and testers), Product Owners, coaches and managers. We
aimed to interview a broad representation of the organization, talking to informants in dif-
ferent roles, with various backgrounds and representing different organizational levels in
order to gain as complete a view of the situation as possible. We mainly selected persons
with long experience with the organization to be able to reflect the whole transformation
journey, but also a few persons joining later on to give us another perspective. Many of the
interviewees had a long background at Ericsson. About half had joined Ericsson over ten
years ago. 2/3 of the interviewees had joined the studied case project over a year before our
interviews and only 1/3 had less than a year of experience from the case project. A bit more
than half of the interviewed persons had a background in agile methods before joining the
project, and around half of them had transferred to the project from the first agile project at
site A, reported in (Paasivaara et al. 2013). All interviewees were selected with the help of
case organization representatives. The interviews typically lasted one hour, but the length
ranged from half an hour to two hours. Especially for the few first interviews, we reserved
more time, as we asked more background questions in order to understand the history of
the organization and the starting point of the transformation. These early interviewees were
managers and coaches, who had a broader overview of the organization. The subsequent
interviews were focused on the transformation and were somewhat shorter. During the first
interview round, two researchers participated in all interviews, one being the main inter-
viewer (Author 1, in a few interviews Author 3) and the other one taking detailed notes, as
well as asking additional questions (Author 2).

During the first interview round we learned that the organization had started to define
common values, and would be working further with these values in workshops. The
common values and the related value workshops were an important step during the trans-
formation journey, which was the reason why we decided to study them further. We had a
possibility to participate as observers in both workshops and, after the second workshop,
interview 12 participants from three different sites. This formed the second interview round.
These interviews were short, ranging from 15 to 30 minutes each. The interviewees ranged
from team members to managers. These interviews were conducted by a single researcher
(Author 1), who selected the interviewed persons amongst the workshop participants.

During the third interview round two interviews were done to validate our results after
we had analyzed the data. The first interview took place after we had analyzed the data from
the first interview round and the second one after analyzing the second round interviews.
The main purpose of these interviews was to deepen our understanding about topics that
emerged when analyzing the data, as well as validate that we had understood particular
issues correctly, e.g, the product structure. In the first of these interviews two researchers
and two interviewees were present and in the last one, one researcher and one interviewee.
These interviewees were selected as they had a broad view of the whole organization and
were actively involved in the transformation in the whole organization in their roles as line
manager, project steering committee member and organizational coach.

The number of interviews and interviewees differ, as in two interviews we had two inter-
viewees and in another three. The multi-person interviews during the first interview round
were due to interviewee time limitations. For example, we could have interviewed only one
of the three coaches (who had been doing exactly the same work) and only one of the con-
sultants (also working tightly together), but the interviewees suggested group interviews to
which we agreed, as we thought it would give us a broader picture than conducting single
person interviews. In addition, in the last validation interview we had two interviewees, with
whom we checked our results and asked clarifying questions.



Empir Software Eng (2018) 23:2550–2596 2559

During the two first interview rounds we used an interview guide approach with pre-
determined topics as suggested by Patton (1990). The main topics were the same for each
interviewee but the questions were adjusted based on their position and background. Table 1
shows the roles interviewed and the interview guides can be found in Appendix A and B.

All interviews were conducted face to face in the organization’s facilities and recorded.
The recordings were transcribed by a professional transcription company.

As part of this study, we visited all the European sites (A, B, C, D). Unfortunately, due
to budgetary restrictions, we were not able to visit the Asian subcontracted site (E), but
were able to interview one representative of that site who temporarily was located at site D.
Except for that one interview, the data we have on site E are the descriptions given by people
at sites A, C, and D who closely collaborated with that site. However, our results focus on the
main internal sites (A, B, C and D), as this was where the large-scale agile transformation
took place. Site E as an external site, was not actively included in the transformation, and
the plan was to drop the site in the near future.

3.3.2 Observations

To support the interviews, we conducted five observation sessions of altogether 31,5 hours
during seven days. The events observed were selected carefully to support our study: 1)
to see in practice how the basic Scrum practices were implemented in the case organiza-
tion we observed how a Scrum team performed the activities related to a sprint change:
sprint review, retrospective and sprint planning. 2) To understand how the major coordina-
tion events worked in practice, we observed the weekly Product Owner meeting, as well as
two common bi-weekly demos, where a team or teams who have finished something that
might interest others demonstrated their work. 3) To follow major transformation events,
we observed both 2-day value workshops (arranged at sites A and D) and one continu-
ous integration (CI) roadshows (arranged at site A). As explained later on, common values
and the related value workshops were one of the major transformation steps. They were

Table 1 Interviewees and their rolesa

Role Site A Site B Site C Site D Totalb

Development team members 3 + 2 1 1 + 5 3c 15

Product owners 2 1 1 4

Architects 1 1 + 2 4

Coaches 3 + 1 + 1 1 3 3 12

Subsystem 1 3 4

Responsibles

Line managers 3 + 2 + 2 1 8

Other managers 6 1 + 1 8

Total 20 3 18 14 55

aTransformation interviews + value workshop interviews + validation interviews
bThe sum exceeds the total number of interviews, as a few persons had several roles (e.g. being both a sub-
system responsible and a coach or a development team member), and a few persons participated in multiple
interviews (e.g., persons participating in the validation interviews).
cOne of these persons was from site E, but was working at site D at the time of the interviews.

Bold indicates that the columns and rows represent sums



2560 Empir Software Eng (2018) 23:2550–2596

organized to unite the globally distributed organization. Building the CI system and spread-
ing the CI knowledge and CI mindset in the organization was another major transformation
step. During the CI roadshow sessions the persons who had participated in building the first
CI system presented the current situation of CI and the goals of CI to the other teams, as
well as discussed current challenges in the area. Similar CI roadshow events were organized
at three other major sites.

The first and second author conducted the observations as non-participants. During
the breaks they discussed with the participants. The observers took detailed notes during
the observation sessions on what happened, what was presented and discussed, who were
present, and how the participants behaved. For confidentiality reasons, the observation ses-
sions were not recorded, as during those sessions details of new product features were
discussed. Such details were, naturally, highly confidential, and as a result we were not
allowed to record the sessions. The information gathered during the observations was used
to support and complement the interviews. Table 2 shows the details of the observations.

3.3.3 Documents

We received a number of documents from our interviewees, e.g., slides discussing the pro-
cess, working practices, product and organization structure, as well as a fictional story
called the “Showcase”, created by the agile coaches together with the management team to
describe how this organization would look like in two years. These documents were used to
triangulate and complement the information received in the interviews.

3.4 Data Analysis

We analyzed the data qualitatively, using the Atlas.ti software package. We coded the data in
six main categories: four main themes according to our research questions, and two context
categories, i.e. organization structure and case background. The research question-based
themes were motivation for the transformation, phases of the transformation, transformation
challenges, and mitigations and success factors. We then proceeded with detailed coding,
resulting in 605 codes, such as Business flow definition, Daily Scrum, and Domain owner
meeting participants. Following this, we grouped the detailed codes into a total of 58 code
families, such as Development Practices, Coaching Community of Practice, and Cross-site
teams. The qualitative coding of the transcriptions of the first interview round was done by
one researcher (Author 2), while two researchers (Authors 1 and 3) instructed and closely
followed the process discussing together daily. The second round interviews were coded by
one researcher (Author 1).

Table 2 Observations

Observed sessionsa Site Duration Observer

Scrum rituals, PO meeting, bi-weekly demo A 7 h Author 2

Value workshop 1 A 6 h + 3 h Authors 1 & 2

Bi-weekly demo D 0.5 h Author 2

Value workshop 2 D 6 h + 3 h Author 1

Continuous integration roadshow A 6 h Author 1

aIn chronological order



Empir Software Eng (2018) 23:2550–2596 2561

3.5 Limitations and Validity

We discuss the validity of our research from four viewpoints: internal validity, construct
validity, external validity and reliability (Yin 2009). The fourth type of validity, statistical
conclusion validity, is not relevant to this study.

Internal validity concerns the validity of the causal relationships observed in the case
(Yin 2009). As this is a descriptive case-study, we refrain from theory building, and the
reported causal relationships represent the views of our subjects. The threat that this might
not perfectly represent reality remains.

In case study research, construct validity concerns how well the description of the case
represents reality. We interviewed people who were actively involved in the ongoing trans-
formation. Therefore, it is likely that their views and recollections reflect reality as the
events discussed were contemporary. However, there are always risks related to respon-
dents’ bias due to personal opinions or social pressure. The construct validity of a case
study can be increased by the triangulation of data sources, investigators, theories and meth-
ods (Jick 1979; Yin 2009). We used several types of triangulation: we collected data by
several methods, from several subjects and by several researchers. First, as it is not rec-
ommended to conduct a case study by relying on a single data source (Yin 2009), we
collected data by three different methods: interviews, observation, and document analy-
sis. Second, we interviewed a large number of subjects in different roles, with varying
backgrounds, from different sites, and with differing length of experience in the organi-
zation to get as broad representation as possible. Third, the data was collected by three
researchers, who all conducted interviews and two participated in the observation sessions.
32 of 45 interviews were conducted by two interviewers and one observation session, a
two-day value workshop was observed by two researchers. All three researchers partici-
pated in data analysis and writing. Three different investigators collected and analyzed the
data. We employed three data collection methods: observations, interviews and document
collection. Our data sources included observation notes, interview transcripts, and company
documents.

The external validity of research concerns the domain to which the research results are
generalizable (Yin 2009). To help the reader to understand the contextual factors of the case
organization, we have described the context in detail.

Reliability concerns whether different researchers had produced the same results if they
had studied the same project (Yin 2009). The main threat to reliability in this case is the var-
iability in data collection. We minimized this threat by involving several researchers in the
interviews, and having the analysis results checked by both other researchers and company
employees. This triangulation makes our results robust against threats to reliability (Jick
1979; Yin 2009). Most data collected converged between the investigators, methods and
data sources and revealed no notable threats to the construct validity or reliability of our
results.

After analyzing the data, we arranged a feedback session in March 2014 to validate
our results. The feedback session took place in the site A team area with a videoconfer-
ence connection to the other European sites: B, C, and D. The whole organization was
invited to the session and around thirty people participated actively in the session. We
received positive feedback: the organization had already started implementing some of the
suggested improvements and would take into account our findings when planning the next
improvement steps. No corrections to our findings were presented. Feedback we gave to the
organization did not affect our results, as the session was organized after our main interview
rounds and only one validation interview took place after the feedback session. Finally, the



2562 Empir Software Eng (2018) 23:2550–2596

fourth author of this paper, a representative of the case organization commented on the final
draft of this paper.

4 Results

4.1 Motivation

In this section we answer our first research question, RQ1: Why did the organization initiate
an agile transformation?

According to our informants, there were three main motivators for the transformation in
the case organization: 1) Agile software development was becoming an important part of
Ericsson’s corporate strategy, 2) a dissatisfaction with the current way of working, and 3) a
need to enable rapid end-to-end flow of features and continuous deployment.

4.1.1 Agile as Part of the Corporate Strategy

At the corporate level, Ericsson had identified the need to be more agile, and had made
the adoption of agile methods a strategic priority. Several successful agile transformations
had already taken place in various units withing the company. However, each unit inside
Ericsson was given the freedom to choose whether and how to adopt and apply agile. At
site A, the biggest site of our case organization, a previous, still ongoing project, had started
the transformation earlier (see (Paasivaara et al. 2013)). A large group of people from that
project were gradually transferred to the case organization, and to them, agile was already
a natural way of working. Thus, given their exprience with agile, it became natural also for
the case organization to start thinking about adopting agile.

4.1.2 Dissatisfaction with the Current Way of Working

After the product was acquired, the case organization started to implement Ericsson’s tradi-
tional, waterfall process framework, even though the first development teams did not use any
well-defined development process. The early development teams were simply assigned new
features with preassigned deadlines.The teams then implemented the features as they saw
fit. Our interviewees reported that development was slightly chaotic at this time, but features
were finished on time. The lack of a defined process was not considered a major problem,
because there were only a couple of small teams working on the product, in addition to a
group of external consultants.

However, as the organization started to grow in 2012, it became necessary to imple-
ment at least somewhat orderly process. The first step, in 2012, was to implement a
component-team based model, which seemed natural, as the product was composed of sev-
eral components, each requiring specialized technical knowledge. The component teams
had members with deep expertise on their individual components. When developing features
spanning several components, virtual feature teams were used. In these, specialists from dif-
ferent component teams collaborated on a specific feature. There were several issues with
the component based structure: it was challenging to plan and coordinate work, as features
depended on several components, and experts were not always available when needed; the
work was not considered efficient; development lead-times were long; teams had difficul-
ties in finishing promised features on time; and team members felt that this way of working
was stressful and somewhat chaotic. The rapid organizational growth from around twenty



Empir Software Eng (2018) 23:2550–2596 2563

persons to over one hundred exacerbated the situation. Thus, they felt that change was
needed.

4.1.3 The Need to Enable Rapid End-to-end Flow and Continuous Deployment

At the time of our study, the product was released every eight weeks, the same rhythm as
when it was acquired by Ericsson. However, this was considered too slow, and the goal of
the organization was to transition towards continuous deployment. The idea was that a new
feature could be taken as part of the product instantly when ready.

My dream is that we shouldn’t have releases at all, but that a feature goes to production
right away when it is ready. It means that what we do here should include coding and
verification in the team, as well as continuous integration and automatic regression
tests so that we can trust that when they [the team] say it’s ready, we can just push it to
the system. — Manager

Thus, the hope was that going agile would enable them to implement each feature in
a cross-functional team as efficiently as possible, from requirement until delivered as part
of the product. Moreover, by using agile practices, Ericsson aimed to optimize the whole
end-to-end flow:

Our goal is that we can make this whole end-to-end chain work in a new way, to
remove all waste, all unnecessary handovers, and [...] to optimize the whole flow, from
customer requirement until deployment. — Manager

Optimized end-to-end development would help the organization to respond quickly to
changing customer requirements, as well as to provide customers constant visibility on what
is coming out next.

To achieve these goals, a wide spectrum of organizational improvement actions were
undertaken, as described next.

4.2 Phases of the Transformation

In this section we answer our second research question, RQ2: How did the transformation
proceed?

The overall approach to the transformation was experimental — based on their previous
experience in transitioning another product program to agile, the managers had learned that
it is impossible to plan the transition in detail and execute it with a “waterfall mindset”.
Instead, the managers and coaches took an experimental approach, purposefully focusing
on a single key change or improvement target at a time. This way, the main transfor-
mation steps were not planned beforehand, but were decided one at a time on a need
basis. Thus, the phases we report below are the researchers’ construct that we present
as a way of structuring the discussion rather than as a prescription for conducting agile
transformations.

We discuss the transformation organized by three main phases: 1) introducing agile,
2) finding common ground through value workshops, and 3) towards continuous integra-
tion and deployment. In addition, we describe the situation before the transformation as
Phase 0: knowledge transfer and component-based teams. The main phases, as well as some
major events are presented in Fig. 4. As illustrated in the Fig. 4, the phases were some-
what parallel and most did not have clear ending dates. Next, we describe each phase in
detail.



2564 Empir Software Eng (2018) 23:2550–2596

Platform 
acquired

J F M A M J J A S

2011

O N D J F M A M J J A S

2012

O N D J F M A M J J A S

2013

O N D J F M A M J J A S

2014

O N D

Knowledge transfer &
Component teams

Introducing agile
Common values

2 teams start 
knowledge 

transfer

2 mainly 
collocated 

teams at site D

Knowledge 
transfer ready

Pilot team

Full-scale 
roll-out

Building 
common 

backlog starts

CI and TA teams 
established

Competence 
pool established 

at site E

PO Cloud 
started

Value 
workshops

CI road shows 
at several sites

Continuous integration &
Test automation

Fig. 4 Timeline

4.2.1 Phase 0: Knowledge Transfer and Component-Based Teams

Knowledge transfer from the original development organization, including external consul-
tants, started soon after the acquisition. The first two teams were built in fall 2011. During
winter 2011-2012, these teams worked partially collocated at site D and partially as dis-
tributed teams, as part of the team members came from sites A and B. However, during the
most intensive knowledge transfer period, most members worked collocated at site D for
longer periods. These first teams were working without any specific process. Instead, team
members collaborated informally aided by “agile seating”, i.e. they shared a single large
table:

As I see it, we had no process in the beginning that we would have been following... So
no Agile processes, nor [any] traditional waterfall model. — Team Member

When growing the organization from the initial two teams, the idea was to hire experts
with knowledge of specific system components. In particular, they intended to use internal
recruiting as far as possible. As a result, the experts were located at different Ericsson sites.
In addition, a consultancy company offering experts with specific domain knowledge was
hired at site E. Even though the organization had started talking about agile already in late
2011, they decided to go for a component-based team structure in early 2012. The main
reason for this was that each component required highly specialized knowledge and it was
time-consuming to learn even a single component.

You cannot really ask people to learn more than one component in two years.
— Product Owner

Furthermore, Ericsson had a long history in using a waterfall type process. Thus, this
initial organization structure was based on component teams and a sequential, waterfall type,
process. Typically, a single component team comprised of 10–20 people, was distributed to
multiple sites, and communicated through weekly or daily teleconferences.

Experts from these component teams were selected to virtual feature teams, as illustrated
in Fig. 5, whenever the development of a new feature would start. Virtual feature teams
were loosely structured—team members performed their own feature-related tasks for their
component, and then passed the work further. Usually, a new virtual team was established
for every feature.



Empir Software Eng (2018) 23:2550–2596 2565

Component 
team A

Component 
team B

Component 
team C

Component 
team D

Virtual feature team

Fig. 5 Virtual feature team

This component-based organization structure had several challenges, e.g., suitable
resources for a new feature were not always available, and virtual feature team members
simply performed their own tasks individually, and did not actually work together as a team.

Setting up the virtual teams was challenging because we had the feature and then we
found three guys [with competence A] but we don’t have [competence B] because
they’re all busy with other features. So here we have the resources [with competence
A] available but then we cannot wait for three weeks, so the guys start with something
else. So it’s like a puzzle all the time. — Manager

Furthermore, the team members considered it challenging to work in virtual teams. The
people you were supposed to collaborate with changed constantly and it took time to make
the acquaintance of new people, hindering the development of trust and slowing down team
building. The interviewed team members reported that at that time they identified them-
selves more with the component teams, rather than with the constantly changing virtual
feature teams.

As a whole, the organization structure based on component teams and virtual feature
teams created on top of them was seen as too rigid and not being able to answer market
requirements fast enough. It was not efficient nor predictable enough.

4.2.2 Phase 1: Introducing Agile

When the organization decided to move to Agile software development, the idea of creating
cross-functional, cross-component teams was born. Here, we focus on the organization and
team structure while moving to agile, as it turned out to be both important and challenging.
The structure was tested and modified several times.

At the team level agile, teams were given the freedom to themselves decide the practi-
cal agile implementation, guided by the coaches. Thus, no common agile framework was
prescribed or used.



2566 Empir Software Eng (2018) 23:2550–2596

The organization structure evolved into the current agile team structure through four
phases:

1. Building a pilot cross-functional agile team
2. Full-scale roll-out of cross-component, cross-functional agile teams
3. Creating a competence pool providing team members to cross-component teams

according to the needs of each feature
4. Cross-component, cross-functional teams specializing on specific business flows

Pilot Team The first pilot team was created in early spring 2013 to evaluate the new
concept. This team was formed of volunteers from two sites, who had an avid interest in
adapting agile ways of working. According to our interviewees this team both collaborated
remarkably well, using the agile practices and achieved good development results. However,
one problem was that some of these volunteers had a central role in their previous com-
ponent team, and their absence affected the work of those teams. Therefore, management
decided to dismantle the pilot team after a few weeks and start a full-scale agile rollout with
cross-component, cross-functional teams.

Full-scale Roll-out: All European sites were involved in forming the teams. Line manage-
ment set the frames for the new teams, and the coaches worked on developing guidelines.
Team formation was discussed in several videoconference sessions involving the future team
members. Based on these discussions, the teams were formed so that in Country Alpha the
teams were either site-specific (in site A) or distributed within the country to be able to allo-
cate experts on one specific component located at one of the sites (site B) to different teams.
The other set of teams were created between Countries Beta and Delta to mix in highly
experienced product architects and technical coaches from sites C and D (usually two per-
sons from sites C and D per team) with experts on third party components from an external
consultancy company at site E (around ten persons from site E per team). Altogether 10
teams were created.

Competence Pool: However, this setup between Countries Beta and Delta had to be
slightly adjusted as the optimal mixture of knowledge on different components depended
highly on the specific feature to be developed. All features did not involve all components,
thus how much knowledge on each component was needed in a team depended on the fea-
ture. Moreover, consultants had quite narrow focus areas, and the case organization did not
see having them broaden their knowledge on other components as cost-efficient due to high
attrition rate at the consultant company. Thus, the five quite large teams between Coun-
tries Beta and Delta were rearranged into four smaller teams of 7–9 core team members,
while the rest of the consultants at site E formed a competence pool, from which suitable
resources were chosen to teams according to the needs of the next feature, as illustrated in
Fig. 6. Teams at the other sites (sites A and B) remained the same.

The permanent cross-component teams were complemented with component-based
Communities of Practices (CoPs). CoPs are groups of experts who share a common inter-
est or topic and collectively want to deepen their knowledge (Wenger et al. 2000; 2002).
In the case organization, the CoPs were open to anybody interested in the topic. The CoP
culture was also dynamic. New CoPs were founded when an active individual took the ini-
tiative. When a CoP was not needed anymore, or had difficulty attracting participants, it
ceased to exist. Most CoPs met on a regular basis, as well as had discussion forums, wiki
pages etc. for communication. The usage of CoPs at Ericsson is described in more detail



Empir Software Eng (2018) 23:2550–2596 2567

Fig. 6 Cross-component teams (between countries Beta and Delta) with a competence pool. People at site
E who are not allocated to teams form the competence pool (19 persons)

in (Paasivaara and Lassenius 2014). In the Component CoPs, the experts for different com-
ponents collaborated across teams inside each component. Forming the CoPs was easy, as
they consisted mainly of members from former component teams. Thus, most members had
previously collaborated closely. The daily or weekly component meetings were replaced by
weekly Component CoP virtual meetings. Most CoPs started to function well with the help
of the coaches. The biggest problem was how to transfer the component-specific improve-
ment items, e.g., refactoring, agreed in CoP meetings, to the team backlogs. In addition to
Component CoPs, other CoPs on specific topics were formed, e.g., a CI CoP and a Coaching
CoP.

While forming the permanent cross-component teams during the spring and summer of
2013, the organization was both hiring new team members externally and adding whole
teams by moving them from another, still on-going project that had been using Agile for
several years at site A. Thus, the number of teams grew quickly during this phase: from 10
teams in spring 2013 to 15 in fall 2013.

Specialization in Business Flows: In the beginning of the transformation, the goal had
been to create teams that would be both cross-component and cross-functional, and that any
team would be able to implement any feature that happens to be at the top of the backlog.
However, the organization soon learned that this would never work in practice.

The product included a large number of components, many of them developed using
different technologies, and each component required deep technical knowledge. To solve
this problem, the case organization created teams specializing in use cases spanning sev-
eral components, or business flows as they called them, with a few teams working in each
business flow. This would not require the members to have deep knowledge on all the com-
ponents of the product. Within the business flows each team could implement end-to-end
functionality, from requirement to deployment. The most important of these were Service
Exposure, SIM3 and subscription management, Billing and Rating Services and Connectiv-
ity Services. This was the structure when our study ended. The features developed within

3subscriber identity module



2568 Empir Software Eng (2018) 23:2550–2596

these business flows were mainly done by one team each, however regarding big features
several teams could collaborate. The size of the features varied from small ones that one
team could implement in a week to bigger ones that could take half a year to develop. Before
being called business flows, some managers referred to them as domains:

We have broken down the system into domains [business flows] now, different areas.
The idea is to have a PO [Product Owner] for the domain, and this is also the product
manager for the domain...and maybe the backlog should be for that domain only...It is
five functional domains, and one cross-functional one. — Manager

4.2.3 Phase 2: Finding Common Ground Through Value Workshops

The development organization grew quickly from 10 (spring 2013) to 15 teams (fall 2013),
while introducing agile development at the team level. Even though the goal had been to
form predominantly site-specific teams, due to the knowledge differences between the sites,
approximately half of the teams ended up as cross-site teams. There were lots of people who
had never met. In addition, people at one site did not necessarily know what was happen-
ing at the other sites regarding the development and the transformation. There were clear
borders between the sites:

I see site politics as one of the problems. It’s difficult to communicate between the
sites. So we build up some kind of, us vs. them feelings. That hinders our way of work-
ing. We don’t have a perfect flow in the system. Because we don’t really trust each
other. And that’s a problem. — Coach

Moreover, management noticed that the organization lacked a common direction, regard-
ing both the future direction of the product, as well as the way of working, and there were
site-based and history-based opposing views. Thus, management and coaches decided that
the next step in the transformation journey would be to define a common direction and build
a “we spirit” to help people identify themselves with the single product organization rather
than with their competing sites.

Why we have started with values, [...] is that we would have a common baseline to
continue further, [...] a baseline on which we build this common understanding and
common direction. That we have something common to discuss together. I have seen
as a problem in this whole project that different sites and different people have taken a
bit different direction. — Manager

The work on the common organizational values started in early 2013. The first step was
the Futurospective, a workshop where the agile coaches and managers created a vision for
the organization a couple of years ahead. Based on the results of the Futurospective, the
coaches wrote a Showcase, a fictional story of how the organization would look like and
how it would work in two years time, after tight collaboration and joint creation of a success
story. The idea of the values was born during a workshop on how to make the organization
“more agile”. Thus, the values were based on the one hand on the ideas and principles of
agile, and on the other hand on the three core values of whole Ericsson: professionalism,
respect, and perseverance. The five core values were created in collaboration between the
coaches, the management team and a few developers, and are: One organization, Step-by-
step, Customer collaboration, Passion to win, and Fun.

To share the values with the whole organization, a series of Value Workshops were
organized during winter 2013–2014.



Empir Software Eng (2018) 23:2550–2596 2569

The goal of the value workshops was twofold: 1) to create a common vision for the whole
organization in the form of common values, and 2) to create contacts and collaboration, as
well as building a “we” spirit across the sites by having people meet face-to-face.

The value workshops were held as two 2-day workshops at the biggest development sites,
A and D, with around 20 people traveling from three other European development sites.
The whole management team, all coaches, as well as a few team members traveled. The
only site that did not have workshop participants was site E, the consultant firm, with the
exception of a few consultants who were working on the sites where the workshops were
arranged. The aim was that all team members from sites A, B, C and D would participate
in one of the workshops, as well as meet all managers and coaches face-to-face. The results
from the first value workshop organized at site A was shared with the other sites by having
a videoconference call during the result presentations between the sites A, C, and D (site B
participants were at site A already).

Besides meeting face-to-face, the goal of the value workshops was to jointly discuss and
elaborate the values. Purposefully, the values were not defined beforehand, but the managers
and coaches presented the values in both workshops using examples. What each value really
means were discussed in small groups. In Table 3, we have collected some examples of
what these values could mean based on the Showcase, examples provided and the value
workshop discussions.

The workshops included different kind of group activities and exercises: within the whole
group, within individual cross-functional teams, as well as in highly mixed teams with peo-
ple from different roles and from different sites. For example, in one exercise, the teams
considered what the values would mean in practice in that specific team, and what kind
of concrete behaviors they would lead to. The coaches from different sites planned and

Table 3 Values

Value Examples

One
organization:

We identify ourselves as belonging to the [name of the product] family. We are [name
of the product] people more than we are sales persons, designers, testers, systems or
operations. We prioritize [name of the product] level goals over local site or personal
goals when needed. We engage with and trust appropriate competences and colleagues
regardless of organization or location. We act as ambassadors for the whole [name of the
product].

Step-by-step: We continuously, step-by-step, improve our way of working. We apply continuous learn-
ing, we make changes, trials and errors. We make decisions on a team level. We promote
and perform prototyping. We split our work into smaller pieces and work on them one
step at a time, delivering value constantly to our customers.

Customer
collaboration:

We form partnerships with our customers. Development teams collaborate with customers
on a regular basis aiming to exceed the customer’s original expectations. We propose
customer participation in demos and encourage regular customer interactions. We support
team members in contacting customers or to get customer views.

Passion to win: We take risks, we are not afraid of mistakes. We learn from our mistakes. We don’t give
up. We challenge each other’s ideas and start discussion. We share successes — small as
well as big ones. We step back and see the big picture and remind others.

Fun: We are empowered and proud people, proud of being part of bringing a complex product
into the market with many happy customers. We share good news, feelings and work. We
show trust, empowerment and fun. We support increased transparency and cooperation.
We have great fun working together.



2570 Empir Software Eng (2018) 23:2550–2596

facilitated these workshops as a collective effort. For more detailed description of the
activities during the value workshops see (Paasivaara et al. 2014b).

The first impression of the value workshops was highly positive. In particular, par-
ticipants felt that the organization took a huge step closer to the goal of being a single
organization building a common product. Especially, meeting with people from other sites
and talking face-to-face was a benefit that all interviewed participants mentioned.

The value this event brings, that I see, is that we are no longer just names and faces
behind the screen. You see real people and talk to real people. — Team Member

Regarding the values, most workshop participants seemed to feel that the chosen values
were good:

I completely agree with these values. [...] [the values are] not so easy as before to
forget, or ignore in the daily work, I think that’s the main benefit of the workshop.

— Team Member

Several interviewees agreed that they would personally act differently in the future and
that the events had clarified the values and made them meaningful.

I will probably do a lot of things differently. [...] I’m gonna try to collaborate more,
between the teams. Because I think that’s one of the biggest flaws we have right now.

— Team Member

Some participants worried that the values would be forgotten after the events, expressing
that good intentions formed during the workshops are not enough to implement the values
in the normal working environment. The plan to tackle this was to have the coaches help the
teams work towards the common values and exhibit the behaviors they had planned. Many
of our interviewees also suggested some kind of a common follow up for these events after
half a year or so.

I would say a follow-up in maybe six months or something like that, just to have a
recap of what has changed, what has happened, what I have done. Just a kind of ret-
rospective, just to see what is happening and what kind of next steps we can take. [...]
All sites should be involved with that follow-up, [...] because we should fight for this
one [name of the product]. — Team Member

Even though the values were considered good and the workshops beneficial by all
of the interviewed participants, some were still hoping to have an even more concrete
vision than what the values and the showcase provided. Especially, a concrete product
vision or roadmap was asked for. However, that was not a goal of these workshops this
time.

4.2.4 Phase 3: Towards Continuous Integration and Deployment

The lack of continuous integration (CI) and test automation were major challenges
on the way towards continuous deployment, as the integration and testing phase took
several weeks before each release. The goal was to get rid of the integration and
testing phase, and having the teams integrate and verify the system functionality
immediately.

I think [that] the goal is that we should be able to...when something is ready...it
should...pass through and be deployed directly into production. If we can deploy



Empir Software Eng (2018) 23:2550–2596 2571

something...maybe the first user (story), I mean not a complete thing and deploy it and
test it with a key customer. — Manager

The work towards this goal started in fall 2013 by creating three new teams concentrating
on implementing CI and test automation. Most team members came from another product
developed by the same organization, and in which agile methods had been in use for several
years. In that product CI and test automation had been a major and extremely successful
effort. Thus, the teams had ample relevant knowledge and experience.

A future goal was to spread the CI knowledge, goals and mindset to the whole organi-
zation: from teams up to the management by Continuous Integration Road Shows arranged
during spring 2014. These consisted of information events and trainings for the whole
personnel, e.g., on the selected test framework.

One of the Lean principles (Poppendieck and Cusumano 2012), optimizing the whole,
is behind the goal of end-to-end development. In this case, end-to-end development meant
developing system functionality from a customer requirement to new functionality being
part of the product and used by the customer. One way to shorten the lead time of end-
to-end development is to develop each functionality in a single team. This removes extra
handovers and non-value adding waiting. CI and automated testing aims to optimize the last
part of the end-to-end flow before the release.

Another action the case organization took to optimize the flow was to involve the teams in
the early phases, i.e., in planning and design. The idea was that the teams would themselves
conduct initial studies on new features: Feature Investigations (FI) and Feature Concept
Studies (FCS). The purpose of these studies was to quickly investigate whether a feature
is doable, how much effort it might require and how it could be implemented. Previously,
experts such as architects had conducted the studies during the planning phase of the water-
fall model. However, now the aim was to perform less profound studies quickly whenever
new feature requirements appeared. The expected benefits were threefold. First, as the stud-
ies are not that profound, quick feedback can be received. Second, when teams are involved
they learn more about the features, thus speeding up implementation since no extra han-
dovers or documentation are needed. Third, as the number of experts doing these studies
was limited, reducing their work with FIs and FCSs would free them up to focus on more
profound issues. At the time of our research, the studies were already assigned to the teams.
However, in-team experts, e.g., architects or subsystem responsibles, normally took the
main responsibility for conducting the studies.

At the end of our study period, the organization had six releases per year but the goal
was that the teams would be able to deploy new features into production immediately when
they are finalized.

4.3 Challenges and Mitigations

In this section we answer the last two research questions, RQ3: What challenges did the
organization encounter? and RQ4: How did the organization mitigate the challenges?

Overall, our interviewees considered this agile transformation very successful: they had
taken major steps towards their target—a unified agile organization having the capacity to
deliver value continuously. However, the journey had not been without problems. Next, we
discuss the major challenges encountered (see Table 4), as well as how the organization
attempted to solve them. All challenges were not yet resolved by the end of our study period,
however, the transformation journey continues as the organization continuously attempts
to solve new challenges as they emerge and continuously improve their way of working,
following their experimental approach to the transformation.



2572 Empir Software Eng (2018) 23:2550–2596

Table 4 Challenges and Mitigations

Challenge Mitigation used by the organization

Change resistance Building a leadership team with an Agile mindset

Technical debt Establishing a common backlog, investing in system improve-
ments, introducing supportive roles: subsystem responsibles
and architects

Lack of a common agile
framework

Setting up a Coaching Community of Practice to support
similar coaching across teams and sites

Lack of coaching and coaches –

Lack of agile training Coaching as a substitute for training

Cross-site teams Cross-site visits, visiting engineers, providing high quality
videoconference equipment, cross-site value workshops

Working as “a real team” Pair work to broaden the knowledge of the team members to
other components, letting teams specialize in specific business
flows

Any team cannot implement
any feature

Teams specialize in business flows

Lack of continuous integration
and test automation

Building CI teams and appropriate test environments, creat-
ing automated tests for legacy code, training personnel on
continuous integration, e.g., by arranging “CI Roadshows”

Agile teams in a waterfall
organization

Adding end-to-end responsibility to cross-functional teams:
building continuous integration and test automation systems
and involving teams in early planning

Challenges in defining
the Product Owner role

Setting up a Product Owner Team, the “PO Cloud”

Challenges in breaking down
the requirements

–

Backlog challenges Building a common backlog

Constant change –

4.3.1 Change Resistance

The first initial attempts to start the transformation were in 2012, but they did not lead
anywhere as the issue polarized the organization. Some did not want to change the way of
working at all, and those willing to change had different views on how the transformation
should be conducted. Initially, the leadership team was not willing to sacrifice deliveries in
order to support the transition. Several leadership team members found it more important to
deliver new features than to focus on a major organizational change.

The top operative management was located in [site C], and they hadn’t adopted the
Agile philosophy. There was so much resistance that it was absolutely impossible to
drive the change from bottom up. — Team member

During summer and fall 2013, the leadership team was reorganized, and new members
having previous experience in agile transitions and strongly supporting the transforma-
tion were added. After this change, the transformation was rolled out full-scale, with less
resistance.

However, at the time of the interviews, there were still groups of people in the organi-
zation, who had not yet adopted agile thinking. For example, the product management had
still a quite plan-driven mindset, as illustrated by the following quote:



Empir Software Eng (2018) 23:2550–2596 2573

In product management there’s still some belief that a plan is the truth and trying to fulfill
that is a good thing. — Coach

The evidence related to change resistance was strong in both the sense that it was men-
tioned and discussed in depth by many respondents, as illustrated in the quotes above,
as well as in the fact that it was the explicit reason for changing the membership of the
leadership team.

4.3.2 Significant Technical Debt

One bottleneck that prevented the transformation was a high degree of technical debt in
the system. Technical debt is a metaphor originally referring to “not quite right code which
we postpone making it right” (Cunningham 1992) but that since has expanded to include a
spectrum of issues from bad coding to architectural issues (Kruchten et al. 2012)

The system was originally designed for a single customer. Additionally, the development
in the previous organization had occurred within strict deadlines. Together, these two fac-
tors had resulted in a situation where lots of shortcuts had been taken in development, and
the system was not stable enough to be scaled up for a larger pool of users. Improvements
had to be made before new features could reasonably be implemented. Moreover, in the
beginning, when working in component teams, adding new features had the highest priority,
while the quality of the underlying system suffered. That happened partly because the over-
all architecture was not well understood by the new developers. All this led to increasing
technical debt.

During 2012, many system improvements took place and a few components were
replaced by Ericsson’s own components.

Furthermore, when working in component teams, management used to make the feature
implementation decisions according to ever changing customer requirements. Feature pri-
oritization could change constantly, causing major challenges in design, coding and testing.
However, this was improved after establishing a common backlog and assigning subsystem
responsibles and architects to the development teams.

The technical debt was a pervasive issue that despite its importance was raised only
by few technical experts. However, the importance of dealing with it was reflected in the
urgency of getting a working CI system in place to harness the product, and the fact that it
required serious architectural changes to the components.

4.3.3 Lack of a Common Agile Framework

The organization had decided not to use any common agile framework guiding the teams’
day-to-day working practices. Instead, each team could itself decide how to work. The only
commonalities between the teams were the common bi-weekly demos, coaches, and the
use of Jira as a backlog management tool. In the common demo, usually one team demon-
strated their achievements. This demo was open for everyone in the organization and it was
organized as a video/audio-conference between the sites. The teams having finished some-
thing of interest to others would give a demo. Some Scrum trainings were arranged in the
beginning, but participation was voluntary, thus not all participated. Some teams and team
members had already agile experience from their previous project, some not. Thus, taking
agile into use at the team level was not systematically organized.

Many interviewees expressed that starting with a common agile framework that teams
could later on tailor to their needs would have been preferable, as that was how it was done



2574 Empir Software Eng (2018) 23:2550–2596

for example in another still on-going agile project at site A, from where many managers,
coaches, and team members had been moved to this project. Several interviewees com-
mented that having a common framework, like in that previous project, would have been a
better solution to this project as well.

I think it’s good to start with a common [framework], like start with Scrum or any-
thing. That’s where you start, and everybody has to go through that or whatever and
then you can go from that. But now it’s really difficult. [...] We have to really go back
to [the basics] so it’s really difficult to do coaching or advice because we are, I don’t
know where we are. I agree it’s kind of a problem. — Coach

Many interviewees from teams even commented that their team had some agile practices
in use, but not a specific process to follow. For example, most teams did not use sprints and
many teams did not have regular retrospectives or planning meetings. At the time of our
study, each team had their own ways of working, often combining Scrum and Kanban, e.g.,
all teams had a Scrum or Kanban board to visualize their workflow.

I came from a company where we followed Scrum exactly, but here I feel that we are
doing things, but we have no process to follow. — Team Member

I think Scrum is a very good start, and when you know Scrum then you can shift into
other stuff. My feeling here is that we are kind of trying to take a short cut and doing
other stuff immediately, so some of these ground pieces are actually missing in quite
many teams. — Coach

A few interviewees suggested having a common pulse for the organization:

I think we need a pulse in [name of the project]. We should have, like, every second
week we could have a common planning, a common retrospective, and I really miss
that. [...] It’s actually on our [Coaches’] Kanban board to start up this pulse, this
heartbeat. — Coach

Some sort of timeboxing could help to push us to work harder and to help us to
prioritize our work so that it is done in the right order. — Team Member

The common demo every second week was a start for this pulse and our interviewees
found it useful. However, they did not consider this sufficient.

A few interviewees explained that one reason for not starting with a common agile
framework was, surprisingly, due to that above mentioned still on-going agile project at
site A. This other project had started their agile transformation a few years back with strict
Scrum that they later modified towards Scrumban and gave the teams a lot of freedom
to choose their ways of working. As part of the personnel from that project had moved
to the case project, some interviewees suspected that the managers and coaches moving
from that project did not consider it necessary to go back and start with a common Scrum
framework and Scrum trainings, as they had done that and were “past that phase”. They
explained that the persons probably assumed that the rest of this project would be as mature
in agile as their old one, making it possible to directly apply the same kind of practices and
thinking.

So they probably tried to short-cut this path through Scrum. So they kind of tried to
start where the old organization was. — Coach

However, in practice this was not possible, as a large part of the personnel in this new
project was new to agile or had little familiarity with agile, and thus needed basic training



Empir Software Eng (2018) 23:2550–2596 2575

and a framework to start with, before they could start modifying it. Interviewed developers
that had moved from that other project to the case project, found having a common agile
framework with common Scrum trainings a much better way of starting the transformation
than giving quite free hands to the teams.

As the new organization was composed of persons from several internal organizations
and sites, none of the groups actually wanted to say that “this is the way we should work”.
Instead, they tried to come to a joint understanding and a way of working. However, achiev-
ing such an understanding takes time. Actually, the managers and coaches coming from that
other on-going agile project at site A explained to us that they did not want to “push” too
much the ways of working in their previous project, as in the beginning they had done that,
but the other sites clearly did not like it, but instead always answered in style “but this is
a totally different kind of product”. Thus, instead of following the good practices from the
previous project, they decided to find together a common way of working for this project.

A major step towards this goal was the creation of a cross-site Coaching Community
of Practice (CoP). Having a Coaching CoP that meets regularly aims at helping coaches to
establish a common way of coaching and to guide the teams to work in similar ways across
the sites. This would be helpful also for people changing teams, e.g., the floating resources
in the competence pool.

I think that’s [Coaching CoP] really important. And it must be cross-site, so that we
can coach in the same direction, at the same time and have the same view on coaching
and the ways of working. So, instead of going into control mode we should coach in
the same way. And say the same things about what’s good and bad. — Coach

The evidence regarding the problems related to the lack of a common agile framework
came from a few respondents, who had participated in an earlier agile transformation within
Ericsson. While small in the number of respondents, their insights were deep, and they dis-
cussed the issue at depth in our interviews. They very strongly recommended that a common
framework should be used instead of giving teams too much autonomy too soon.

4.3.4 Lack of Coaching and Coaches

At the time of our interviews, the organization had both team and organization level coaches.
Approximately a third of the teams had their own team coaches. The organizational coaches
supported the rest of the teams, each having several teams to coach. However, they were
also responsible for helping with agile issues at the organizational level and developing
the whole organization and its way of working further. Thus, the coaches lacked time to
concentrate on helping individual teams. For example, they could not always participate
in their teams’ daily meetings or retrospectives. The interviewees found coaching they had
received extremely useful, but thought that the number of coaches was not sufficient.

Last week the coach participated in our daily meetings only once. And during the
previous week maybe twice. [The coach] wasn’t involved in other things.

— Team Member

Currently we have so many teams and there’s only a few of us, so we are not able to
support teams very well. — Coach

During our study period, the organization slightly increased the number of both orga-
nizational and team coaches. As the number of teams grew at the same time, the situation
improved only slightly.



2576 Empir Software Eng (2018) 23:2550–2596

The data related to the lack of coaching and coaches came from a few coaches and a
few team members, and is not as strong as for the previous categories. While coaching is
important, the lack of it did not seem to be one of the most important challenges in this case,
as coaches were available.

4.3.5 Lack of Agile Training

The agile knowledge was not yet at a sufficient level despite the fact that the organization
had experienced people with knowledge on agile methods. The level of agile knowledge
varied a lot from person to person, as some had used agile in their previous organizations
while some had never used agile. Even though a few agile trainings had been organized, not
all employees had participated in these, as participation had been voluntary and they had
prioritized other tasks. The knowledge of agile experts was not spreading as well as it could
have been.

A few interviewees even mentioned that the basic terms, such as feature, story or defi-
nition of done were not known or understood similarly by all, which is a basic requirement
for working together in an agile way.

Sometimes I send out mail or call people and discuss these, what I feel is basics.
And then, for example, I talked to somebody about the definition of done. But then,
yeah they kind of agreed some of them, but a couple of days later you get back some
questions, “What is the definition of done?”. And then you realize, okay. We have to
really go back to, so it’s really difficult to do coaching or advice because I don’t know
where we are. I agree, it’s kind of a problem. — Coach

The organization had plans to arrange trainings on a need basis. Moreover, the collab-
oration of coaches across sites and unifying the coaching would in time increase the agile
knowledge in the teams.

The evidence related to the lack of agile training came from a few respondents, in par-
ticular coaches. Many people in the organization had already earlier received agile training,
but the coaches noted clear differences in the knowledge, e.g., across site borders. While
the data supports the importance of agile training, the lack of it was not one of the main
concerns in the organization.

4.3.6 Cross-Site Teams

Even though one of the principles when forming the cross-component agile teams was to
build site-specific teams, ca 50% of the teams were distributed between two or three sites at
the end of our study period. Many interviewees commented that this was not a good solution
for high quality team work. However, due to knowledge asymmetries between the sites this
structure was deemed necessary.

Q: Do you feel that you are really a team?
A: No, I don’t. I am a team player and I like working in teams, but I don’t feel that we
have a team spirit. And, I guess it’s hard, when you have multiple sites. As long as you
don’t know the people, you can’t possibly care for them either. — Team member

It would be nice if we could work with local teams, if we didn’t have any dependen-
cies, for example. [...] But we do have dependencies between each other, so in that
case it’s better to have distributed teams, even though it is less efficient on the team
level. — Coach



Empir Software Eng (2018) 23:2550–2596 2577

This distribution was mitigated by site visits, e.g., single team members located at site
B visited the rest of their team at the site A at least once a week. From site E, there were
visiting engineers constantly working with teams at sites A and D, as the “eyes and ears” of
the site E.

Moreover, high quality videoconference equipment was used between sites A, B, C
and D for most meetings. The videoconference connection between the distributed team
members at sites A and B, was mentioned to be open sometimes all day to enable ad-
hoc communication. Unfortunately, site E, a consultancy company, did not have compatible
videoconference equipment. Thus, personnel at that site usually participated in using only
audioconferencing.

Many interviewees emphasized that the team members should travel even more, and that
they should arrange exchange visits and work co-located, at least for short periods.

We don’t talk to each other that much. So you do not trust each other. If you don’t
know somebody, it’s difficult to trust them. [...] My solution is to travel more. To actu-
ally see each other. The teams [should travel]. The ones who really should cooperate.
[...] Once you have met each other and worked together for a while, then it’s much easier.
And that sticks for a while. — Coach

One goal of the value workshops was to increase trust, and make people know each other
to lower the threshold for contacting. However, most cross-site teams spanned sites E and C
and/or D, and as team members from site E, the consultancy company, did not travel to the
workshops, they did not help with building team cohesion as much as they could have.

The use of cross-site teams with members from organizations that had not been tightly
integrated before arose as one of the major problems in the case project. It was mentioned
by most respondents, and also was the reason for arranging the value workshops.

4.3.7 Working as “A Real Team”

All cross-component teams had experts from several components. As each expert had deep
knowledge on his or her component only, some of the interviewed team members felt that
all teams were not yet working as “real teams”. The global distribution of many teams made
this even worse.

Q: You said that you do your tasks mainly all alone so, what do you do with the other
team members?
A: I don’t do anything with them. I don’t work...
Q: So you don’t have any collaboration?
A: Sometimes they come with questions, and I try to answer. — Team member

Due to the deep technical knowledge required team members could not really collabo-
rate, e.g., help other team members working with other components when done with their
own tasks. Thus, at times some team members had a too high workload, while others might
not have work at all. During one of the value workshops, one team member worked on a
task, while the rest of the team participated in the workshop. The team members explained
that this individual was doing a critical task that no-one else from the team had knowledge
of and thus could not help with. They explained that otherwise the whole team would be
solving the problem together instead of participating in the workshop.

One of the goals the organization had was to broaden team member’s knowledge on other
components, e.g., by working as a pair with an expert of another component in the own
team. The goal was to add collaboration between the teams, e.g., pairing teams, so that they



2578 Empir Software Eng (2018) 23:2550–2596

could learn from each other. Moreover, an exchange program across the sites was suggested
to enable team members and teams from different sites to learn from each other. Exchanges
were going on at the time of our study, even though it was not systematic.

Many components were quite complex, requiring significant effort to learn. This learn-
ing was not structured or organized, leaving it mainly to individuals to organize their
familiarization.

Teams distributed between sites C, D and E had a couple of very experienced members,
e.g., subsystem responsibles, sub-system architects or technical coaches from sites C and
D, while the rest of the team was located at site E. As site E was located in Asia, and sites C
and D in Europe, there were significant cultural differences between the sites. At the time of
this study the technical coaches had taken the role of team leaders and the rest of the team
performed individual tasks. These teams seemed to have a long way to go before turning
into real agile teams.

The problem related to part of the teams not being “real” teams was mentioned in partic-
ular by coaches and line managers, working with teams with members on site E. This can
be explained by the fact that we did not interview team members at site E (the consultancy
company). The significance of the problem was evidenced by the fact that the organization
actively planned for how to make the project succeed without site E.

4.3.8 Any Team Cannot Implement any Feature

The initial goal was to have fully cross-functional and cross-component teams that could
implement any feature from the top of the backlog. However, the organization realized that
this might never work in practice, as the different components required very specialized
knowledge that would take long time to learn.

For at least half a year ago they said that one team should be able to do any feature,
end-to-end. That’s impossible. [...] I don’t think we will ever get one team who can do
end-to-end of all features. — Coach

It’s proved that it’s almost impossible to have a cross-functional team that could do
any features. We don’t have a situation where developers would have competences of
many components, and that’s why it’s easier for teams to focus on a specific area.

— Product Owner

We work a lot with third-party products. And I cannot possibly help someone else
working on another platform. And the other way around. They can’t help me, so
there’s not really any point in having cross-functional teams in that sense.

— Team member

Thus, the initial idea of fully cross-component and cross-functional teams was discarded,
as it was not seen reasonable that any single team could be able to implement just any feature
from the backlog, not even after some time of working and broadening the knowledge. At
the end of our study period teams started to focus on specific business flows, which would
not require knowledge on all the components of the product, but only from a few. Within
these business flows, teams would still be cross-functional and able to develop end-to-end
features.

The fact that the agile ideal of any team being able to implement any feature was impos-
sible to meet in this project turned out to be one of the main problems, which explains many
of the organizational changes done. The evidence for this is strong both as it came up in
many interviews, and in the visible actions taken trying to deal with it. Indeed, it can be



Empir Software Eng (2018) 23:2550–2596 2579

considered one of the main findings of our study that there can be cases in which trying to
meet this agile ideal might not be feasible.

4.3.9 Lack of Continuous Integration and Test Automation

At the time of our first interviews, most of the testing was still manual, as appropriate CI
and test automation systems had not been implemented. Therefore, the development teams
had only three to four weeks for implementing new features until the code freeze, when
the integration and verification team would start testing it. The testing phase took three
to four weeks, after which it took approximately three weeks until the system could be
released.

One thing that is in heat, that is due to that we don’t have this CI and the setup. We’re
living in this waterfall mechanism so four weeks before we go into deployment, then
we’re more or less locking the code, the mainstream. — Manager

As the organization was building CI and test automation, this challenge would be mit-
igated. However, the initial effort to build the systems had required a huge effort: three
teams focusing on it for several months. The next major effort, Continuous Integration Road
Shows for the whole organization took place at the end of our study period. The aim of this
effort was to train the personnel in CI practices, as well as build a CI mindset in the whole
development organization.

The lack of continuous integration and test automation was mentioned in particular by
managers and coaches, as well as the active team members. The organization viewed the
existence of a strong CI pipeline as a major facilitator of agile, and its importance can also
be seen in the resources dedicated to building it, as well as in the actions taken to spread the
understanding.

4.3.10 Agile Teams in a Waterfall Organization

A few interviewees commented that the most of the organization was still in a waterfall
mode—only the development teams were agile: product management, release management
and integration and release testing were seen as working in a waterfall mode.

We have teams that try to work in agile, but the rest of the organization is not that
agile. We have this, release management, I don’t see this as an agile setup actually.

— Manager

We still have too much waste. We’re still doing waterfall. We have different phases, we
have to have PowerPoint slides, we have different checkpoints and meetings, before
we can move on. — Team Member

Product line management is still quite strongly in the waterfall world, that everything
should be planned beforehand, and they expect that the feature they ordered will come
out as such. — Manager

This was quite true, as the organization had only recently started to involve teams in the
early planning activities and the integration and release verification activities took a long
time at the end of each release cycle. The organization had recognized this challenge, and
actions to remove the rest of the waterfall had already been taken, e.g., building the CI
and automated testing systems, and involving teams in the early planning activities: feature
investigation and feature concept studies.



2580 Empir Software Eng (2018) 23:2550–2596

The challenges related to product management not being agile, and the need to have
teams involved more in the upfront activities were mentioned mainly by managers and a
few enlightened team members. Actions to solve these problems were in the early phases,
and this did not strike us as one of the main problems in the project. On the other hand,
people strongly commented on the need to reduce the release verification time, and as far
as possible integrate that activity in the development cycle.

4.3.11 Challenges in Defining the Product Owner Role

Defining the Product Owner (PO) role has not been straightforward. During our first
interviews POs were not responsible of the backlog, nor did they participate in backlog
prioritization. Instead, the product line organization took care of that.

We have a separate prioritization meeting where it (backlog) is prioritized. [...] And
I’m not sure who are participating in that, but [the] POs aren’t there.

— Product Owner

Moreover, a few interviewees complained that the POs did not know enough about the
new features to be able to answer the team member’s questions. Instead, they were more
like messengers.

It is pretty hard to explain [the role of a PO], but we have had a portfolio manager on
one site, who has been sitting on the backlog and is responsible of it. But on the other
hand, we have this kind of PO function. And these POs have been more like technical
coordinators and messengers of the product management, so they have not been able
to do independent prioritization decisions. — Developer

The situation improved during our study period, when a new PO team, called the PO
Cloud was established. The PO Cloud comprised all POs, a portfolio manager, a test man-
ager, and a user experience lead. The PO Cloud has an end-to-end understanding of the
system, making it possible to develop clear functional requirements for the teams based
upon a deep understanding of the business requirements from the customers’ point of view.
Moreover, a workshop was arranged in which the responsibilities of the POs and the product
management organization were clarified.

In addition to the PO role, there were many other roles, partly overlapping with the PO
role, such as sub-system responsibles and sub-system architects. To our interviewees it was
not clear what the responsibilities of these different roles were. Even persons holding these
roles complained that the roles and responsibilities were not clear.

We have way too many overlapping roles, we have architects, POs, portfolio manage-
ment and others. [...] There’s too much discussion that’s preventing us to get forward.

— Developer

Even though Scrum does not recognize an architect role, the rapidly growing organiza-
tion with a complicated product considered it important to have persons responsible for the
sub-systems and their architecture. At the time of our interviews, these persons were located
in the teams, and some sub-system responsibles and sub-system architects took care of the
team coach role, as well. At the end of our study period, there was on-going discussion, on
how to clarify the PO and architecture roles, as well as the responsibilities of these roles in
the new team structure based on business flows.

The evidence related to the Product Owner role problems came in particular from the
Product Owners, sub-system architects and the sub-system responsibles, i.e., the people



Empir Software Eng (2018) 23:2550–2596 2581

who felt that their roles and responsibilities were unclear. The issue was addressed during
the study, indicating the importance of having well-defined and understood roles.

4.3.12 Challenges in Breaking Down the Requirements

The organization was still learning how to break down the requirements small enough to
implement within one release by one or a couple of teams. At the time of our interviews,
most features still took over one release to implement. Starting a big feature, that would
require over one release cycle to implement was challenging according to our interviewees,
as that team or teams would no contribute to the next release.

We have been struggling when we have something that is very big and we can see that
this is not fitting into our next release. Then it’s too big to start and then it’s difficult to
start. — Manager

The organization had started a discussion on minimum marketable features, but this idea
had not yet been implemented in practice.

At the team level the interviewees found it challenging to split the features into user
stories small enough to be implemented in a two week sprint.

The ability to chew it [feature] into smaller subareas, so that we could do something
visible in two weeks is still quite bad. — Manager

Now they [user stories] are huge to implement. I wish they could be smaller, so
that they could be implemented during one sprint, preferably even a few stories [per
sprint]. — Team Member

Moreover, as different team members still had quite specialized knowledge, the teams
often had to start several stories at the same time so that each team member would have work
that would fit his or her competences. This indicates that teams worked hard on optimizing
resource usage, i.e. minimizing developer downtime rather than optimizing the flow.

While maybe conceptually a serious problem, the fact that the organization was unable
to create user stories small enough to be finished in a single sprint did not seem to cause
many problems. Interestingly, it seemed rather to be a minor nuisance that would be nice
to solve than a major issue. Except for thinking about the concept of a minimum viable
product (MVP), no clear actions were taken related to this issue.

4.3.13 Backlog Challenges

A common backlog was considered as one of the most important improvement targets. Thus,
it was one of the first improvement actions taken. It was expected to support the new agile
way of working, to help streamline the end-to-end flow, to improve visibility and to help to
define the lead time of new requirements.

Earlier, several different backlogs had been in use: an electronic backlog management
tool was used for issue tracking, and different stakeholders had their own spreadsheets
for managing requirements, features and improvements. This led to poor transparency, and
made it impossible to define the cycle time of a single requirement and to see the whole
end-to-end flow.

Building a common backlog started in early 2013 and was finished in summer 2013. At
the time of the interviews, every new feature and improvement was to be added to this single
backlog. The common backlog was for high-level features and improvements. Each team
had their own backlog where chosen features and improvements were split into user stories.



2582 Empir Software Eng (2018) 23:2550–2596

Our interviewees expressed favorable opinions about the common backlog:

The good thing is that we have a common backlog. — Manager

However, some challenges were seen, as well. The common backlog was big, i.e., it had
a lot of items. In addition, the original idea that any team could pick the next item from the
top of the backlog was not seen feasible.

I don’t like this common backlog because it’s just a bin of a huge amount of features
and improvements. [...] I think they have cut it down to 200 (features) now. So they
have to wait a few years to get it out. — Manager

We actually had problems as someone says that we have a common backlog, but when
a team starts going through the first items of it, they couldn’t understand anything.
They simply don’t have the right competences. An item they were able to do was about
the twentieth on the list and they were told that they aren’t allowed to do that yet.

— Product Owner

As mentioned, the reason for this difficulty was the lack of often very specialized knowl-
edge needed to implement a specific backlog item. To help solve this, teams were starting to
specialize in specific business flows, and the idea was to have business flow based backlogs,
and each business flow having a few teams.

4.3.14 Constant Change

The journey towards agile had been challenging and stressful for everyone as a vast number
of changes had been implemented, while working under high pressure from the customers
who continuously expected and demanded new features. The product structure, team struc-
tures and the process had been changed in parallel with the rapid organizational growth.
Moreover, the development organization was globally distributed to five sites.

From my point of view, we’re currently shooting at a moving target, constantly ... It
means that, we try to, or someone changes the organization, in order for it to work
better, in a lean and agile way. And after a couple of months, they realized that it didn’t
really work. So they make another change, and so on. — Team member

Moreover, activities not directly contributing to feature development, like the devel-
opment of the CI and test automation systems, had tied up several teams, leaving fewer
resources to work on new features. As the organization aims to constantly improve its way
of working, the constant change might never be over, even thought the biggest changes
towards agile adoption seemed to be almost done.

The fact that change was constant came up in most interviews, and was thus strongly
supported. However, most respondents did not consider it a big issue, and preferred to focus
on the fact that the constant change mostly brought improvements to their work.

5 Discussion

In this paper we presented motivation, phases, and challenges and mitigations related to a
large-scale agile transformation in a single case organization. As the first in-depth study of
an agile transformation, we think that the case study adds significant value both to research
and to other organizations with a similarly challenging set-up, needing to customize agile.
Next, we discuss our main findings and lessons learned.



Empir Software Eng (2018) 23:2550–2596 2583

5.1 Motivation for Agile Transformations

In this section we discuss the first research question, RQ1: Why did the organization initiate
an agile transformation?

The organization had three main motivations for the transformation: alignment with the
corporate strategy, dissatisfaction with the current way of working, and a need to enable
rapid end-to-end deliveries of features and continuous deployment.

The two last motivations have been widely reported in the literature as well. Several cases
discuss problems and dysfunctions with their old processes as a motivator for adopting agile,
(e.g., O’Connor 2011; Chung and Drummond 2009; Vlaanderen et al. 2012; Hansen and
Baggesen 2009; Murphy and Donnellan 2009). The need for rapid deliveries and continuous
deployment were related to a need of getting new features to the market faster, i.e. reduce
the time-to-market, reported previously (e.g., Gat 2006; Goos and Melisse 2008; Greening
2013; McDowell and Dourambeis 2007; Prokhorenko 2012; Silva and Doss, 2007).

The corporate strategy to adopt agile, naturally had an impact on the program, and helped
make the decision to adopt agile. While we think this motivation is becoming increasingly
common, in particular with the popularization of ”Enterprise Agile”, we did not find cases
in the literature that explicitly reported this.

5.2 Large-Scale Agile Transformation Phases

In this section we discuss our second research question, RQ2: How did the transformation
proceed?

The transformation started with a pilot phase with volunteers working in an agile team.
This worked remarkably well, which was not unexpected, as the importance and benefits of
piloting in agile transformations has been reported by several authors (e.g., Berczuk and Lv
2010; Chung and Drummond 2009; Fecarotta 2008; O’Connor 2011). The pilot team was
dismantled and a full-scale transformation was started after only a short time for two rea-
sons: the team quickly was able to show that agile could work well in the organization, and
the other parts of the organization started to suffer. The volunteers for the pilot were highly
skilled and active developers, and their absence from their component teams was dearly felt,
as they now became an ”all-star” team, which was not optimal from the organization’s point
of view. This pilot related problem has been discussed in (O’Connor 2011).

Due to the distributed nature of the organization, different sites had diverging views
regarding both the future of the product and the way of working. Thus, there was a need to
align the various parts of the organization to make agile work, and to create a strong product
and organizational identity. To this end, the organization arranged ”value workshops”, in
which common organizational values were discussed, and people from the various sites
were able to meet face-to-face. These value workshops were considered critical from the
point of view of transformation success. We are not aware of other reports discussing how
to align various parts of a large, distributed organization in relation to, or as part of, an agile
transformation.

Continuous integration is a cornerstone of agile, and particularly important for scaling
(Gat 2006; Moore and Spens 2008). Implementing CI became the main focus after the
value building work. The organization had three dedicated teams working on implement-
ing CI, a known good practice reported in other large-scale agile transformations (Beavers
2007; Fry and Greene 2007; Gat 2006). This amounted to a significant investment in get-
ting CI working, also reported in (Gat 2006; Moore and Spens 2008; Rodrı́guez et al. 2013).
As implementing CI requires not only suitable tools, but also a change in the mindset of



2584 Empir Software Eng (2018) 23:2550–2596

developers, e.g., to start implementing automated tests for new code, a series of CI road-
shows were organized. We are not aware of other reports on how to get developer buy in
and change the mindset in a full-scale CI rollout.

5.3 Challenges and Mitigations in Large-Scale Agile Transformations

In this section we discuss the third and fourth research questions, RQ3: What challenges did
the organization encounter? and RQ4: How did the organization mitigate the challenges?

During the transformation, the organization encountered several challenges that they
tried to mitigate. Next, we discuss the challenges and mitigations according to the challenge
classification by (Dikert et al. 2016, Table 11, p. 95) to facilitate easy comparison with the
literature.

The first category, “change resistance”, a common problem in large-scale agile transfor-
mations (Dikert et al. 2016), was also visible in our case. The transformation had challenges
in the beginning, as all members of the leadership team did not fully support going agile, and
wanted to focus on deliveries rather than transforming the organization. The situation was
resolved by reorganizing the leadership team to involve more people with agile experience.

The category “lack of investment”, contains the items lack of training, lack of coaching,
too high workload, old commitments kept and challenges in rearranging physical spaces.
In the current case, we identified lack of training, lack of coaches and coaching, as well
as trying keep existing commitments, all of which have been previously reported by other
organizations. However, the workspaces had already been completely renovated to support
agile development, which explains why we saw no problems related to that.

The category “Agile difficult to implement”, contains the items misunderstanding agile
concepts, lack of guidance from literature, agile customized poorly, reverting to the old way
of working, and excessive enthusiasm. In our case, the organization mentioned the lack of
guidance from the literature. Similarly to (Benefield 2008), the organization struggled with
finding a good balance between control and autonomy, giving teams too much freedom, as
a common agile framework was not emphasized.

According to the literature, the category “Coordination challenges in a multi-team envi-
ronment” contains items like interfacing between teams difficult, autonomous team model
challenging, and global distribution challenges. Cross-site teams posed problems in our
case, as half of the teams were distributed between two or even three sites. Surprisingly
the case did not experience significant problems with coordination between the teams. This
might be partly explained by the existence of the PO team, in which the product owners
closely collaborated, well-functioning communities of practice, and the team specialization
into business flows.

A particularly prevalent category of issues in our case was “Different approaches emerge
in a multi-team environment”. The two main issues in this category, according to (Dik-
ert et al. 2016) are that the interpretation of agile differs between teams, and problems in
using both old and new approaches side-by-side. The lack of a common framework led
to a situation in which teams had different practices, making it difficult to switch teams.
Moreover, the surrounding organization was still in a “waterfall mode”. For example, prod-
uct management and release engineering was done mostly in a traditional way. For product
management, this was much of a mindset issue. In release engineering the lack of agility
could partly be explained by the lack of a working CI system in the early phases of our
study. However, the situation improved during our study period when investing in build-
ing functioning CI and automated tests. Furthermore, there were challenges in defining the
Product Owner role, as product management was unwilling to give the POs the power to



Empir Software Eng (2018) 23:2550–2596 2585

actually prioritize features. This made the POs feel like messengers between product man-
agement and the development teams rather than real POs. This situation improved with the
implementation of the PO team, and maturation in the understanding of agile in product
management.

We were, perhaps surprisingly given the organization’s age and business, not able to
identify any clear issues related to the category “Hierarchical management and organiza-
tional boundaries”. Items in this category include the role unclarity for middle managers in
agile, management remaining in waterfall mode, keeping the old bureaucracy, and keeping
internal silos. Many of these issues were encountered and solved at the biggest site (site A)
already during an earlier large-scale transformation.

The category “Requirements engineering challenges” was, not unexpectedly quite visible
in the case. The literature study mentions problems with high-level requirements manage-
ment, challenges of refining requirements, difficulty of defining and estimating user stories,
as well as a gap between long and short term planning. In our case, most salient was the
challenge of breaking down large features into suitably sized epics and user stories. In the
beginning, the organization did not have a common backlog, but several largely indepen-
dent ones. This issue was resolved in the early phases of the transformation by rolling out
a common tool and implementing a single backlog for the whole organization. From the
requirements engineering point of view, a large technical debt created problems, as work on
it had to be prioritized against development of new features. The common backlog helped
to alleviate this problem, as well.

Regarding “Quality assurance challenges”, which refers to items accommodating non-
functional testing, lack of automated testing, and requirements ambiguity affects QA, our
organization faced significant challenges. In the beginning, the lack of test automation and
CI created problems, as a huge amount of manual testing had to be done, which reduced the
time available for actual development in each iteration. The mitigating actions included seri-
ous investment in building a working CI system, as well as CI roadshows to raise awareness
about CI and help instill the right mindset in the teams.

In the category “Integrating non-development functions”, we have the items other
functions unwilling to change, challenges in adjusting to an incremental delivery pace, chal-
lenges in adjusting product launch activities, and rewarding model not being teamwork
centric. Our organization did not report big issues related to this category. One reason might
by that the quite frequent delivery cycle remained the same during the whole transformation.

One particular problem that we identified that we did not find reported in the literature
was the fact that the organization was unable to attain the agile ideal of any team being able
to work on any item. In addition, teams in the case organization found it difficult to work as
”real teams” as they were formed of experts of different components, and learning to work
on new components would take a long time. They were gradually mitigating this problem by
broadening the knowledge of team members to other components by pair work. Moreover,
both of these issues were mitigated by letting teams specialize in specific business flows.

5.4 Lessons Learned

In this section we have collected four lessons that we can learn from this case organization.

5.4.1 Lesson 1: Experimental Transformation Approach

The case organization espoused an “agile mindset” in their experimental transformation
approach. The reason for this was that it was difficult to determine up front how to perform



2586 Empir Software Eng (2018) 23:2550–2596

the transformation, despite the fact that part of the organization had previous experiences in
transforming a large product development program from waterfall to agile.

In this case, the situation was different from the previous experience: The R&D product
development program was not developing a traditional telecom product for operators, but
a XaaS platform and services that the customers would not buy, but use as a service. The
system consisted of several components, and the organization developing it was new, rapidly
growing and highly distributed. In comparison, one previous transformation in the same
case company (Paasivaara et al. 2013; Hallikainen 2011) was for a traditional, over ten years
old telecom product developed at two sites with a stable organization size. Thus, the set up
was quite different. For this reason, the organization felt they could not follow the steps of
any previous transformation.

In practice, the experimental approach meant that the organization open-mindedly tried
solutions to see if they would work in their setting. If something did not work, it was quickly
changed. For example, the organization tried different team set-ups and made changes
quickly when problems occurred.

The organization had a mindset that it is good to try and ok to fail, since that is the only
way to learn. This mindset was pervasive and what we consider an agile way of imple-
menting agile. We believe that this is an important aspect of succeeding in large-scale
transformation that is widely transferrable to different contexts. The literature review sup-
ported this approach (Dikert et al. 2016) as several companies reported that customization
of the agile approach is an evolutionary process, see e.g. (Rodrı́guez et al. 2013; Ryan and
Scudiere 2008).

While the literature contains little empirically based guidelines for large-scale agile trans-
formations, the literature on lean and lean software development contain some prescriptive
guidelines, e.g. in (Poppendieck 2007; Hibbs et al. 2009; Womack and Jones 2010). Look-
ing at Ericsson’s approach, it seems to embody several of the principles suggested by this
literature. In particular, the focus on mindset and experimentation is well in line with the
suggestions of the proponents of lean.

Mirroring the discussion about this, while this lesson here was learned in the context of
large-scale adoption, as evidenced, e.g., by the discussion above about the lean principles,
it is likely to be valid also in other, i.e., small organization contexts.

Lesson 1: Consider using an agile mindset and taking an experimental approach to the
transformation.

5.4.2 Lesson 2: Stepwise Transformation

As a large-scale lean and agile adoption is a big undertaking, our case organization per-
formed it step by step. Instead of trying to change everything at once, they focused on one
change at a time. First, they focused on teams: they experimented to find out a working
team set-up and get all agile teams to work well. Second, they aimed to unify the highly dis-
tributed organization and to find a common direction by creating and working with common
values. Third, they invested in building CI and test automation systems, as well as training
the whole organization to be able to contribute to this new way of working.

A big bang transformation approach would probably not have worked well in this case,
as the organization had to continue delivering releases to the customers at the same pace
as previously during the transformation. Thus, the gradual adoption of practices and struc-
tures was considered as a necessity. In this case the step-by-step approach was clearly a
successful choice, as it facilitated adoption as everything could not be planned beforehand.
The stepwise approach is closely related to the experimental approach, as when starting



Empir Software Eng (2018) 23:2550–2596 2587

the transformation they did not have a plan of the future steps. Instead, they reacted and
experimented when changes were needed.

The literature contains reports of both big bang and step-by-step transformation
approaches, with step-wise being more commonly used. Often, step-by-step transforma-
tions started by piloting, which was reported as one of the success factors (Dikert et al.
2016). Piloting was the first concrete action in our case project, even though it was used for
a shorter duration than expected, due to the problems experienced in the rest of the organi-
zation, as the component teams lost too many central persons to the pilot team. Still, it was
seen as a necessary step in the transformation.

We observed clear high-level transformation steps in our case organization. However, in
the literature review, besides piloting, we did not identify clear steps that would be common
to all transformations. Thus, this could be an interesting topic for future research.

It could reasonably be argued that stepwise organizational transformation is a widely
useful strategy for all kinds of transformations and process improvements initiatives, and
indeed, even the venerable CMM(I) takes such an approach. Thus, it is likely that this idea
of stepwise improvement is widely applicable, and this case clearly seems to validate such
a statement through the success seen here.

Lesson 2: Using a stepwise transformation approach is good in complex large-scale
settings, where the transformation takes place during an ongoing development effort. Con-
centrating on one major topic at a time keeps the attention on the most important change
topics.

5.4.3 Lesson 3: Limited Team Interchangeability

In the beginning of the transformation the case organization had a goal that any agile, cross-
functional and cross-component team would be able to implement any feature from the
top of the common backlog. However, they soon noticed that this was infeasible, due to
the product complexity and the asymmetry of competences. The product was composed of
several components, each requiring deep technical knowledge. Component specialists were
not distributed evenly to different sites. Moreover, each feature would not touch all the
components, but only a limited set. Of course, agile teams and individuals can and should
broaden their knowledge, but there are limits to what is reasonable and doable.

We believe that also other large organizations implementing agile might find it useful to
take into account that the goal of “any agile team being able to implement any feature on
top of the backlog” might not be fully feasible.

The solution our case organization identified was to have teams specializing in use-
cases spanning several components, or business flows as they called them, with a few
teams working in each business flow. Within the business flows, each team could imple-
ment end-to-end functionality, from requirement to deployment. This was seen as very
important for achieving a fast product development flow, and the end-to-end flow was
not compromised. The teams would not need to have deep knowledge on all the com-
ponents, as the features in a business flow did not touch all components. This solution
seemed to work well. Unfortunately, the change took place close to the end of our study
period, thus we could not observe whether any further improvements to the setup were
needed.

Practitioners have suggested the division of large products into product areas, in which
teams can specialize (Larman and Vodde 2010). Our previous research has confirmed this
(Paasivaara et al. 2013). In this case, however, the difference is that the components in
a way formed logical product areas, whereas the use-cases could better be specified into



2588 Empir Software Eng (2018) 23:2550–2596

business flows, crossing several product areas. One can think of this as a matrix structure,
as illustrated in Fig. 2.

Lesson 3: In a large-scale complex product any cross-functional team might not be
able to work on any item from the product backlog, instead team specialization might be
needed.

5.4.4 Lesson 4: Lack of a Common Agile Framework

The organization gave the teams a lot of leeway in how they implemented agile—perhaps
too much. The organization started by opting for Scrum, and arranged trainings that, how-
ever, everybody did not participate in. The agile background of the project members varied
both between and inside distributed sites, as some had participated in trainings and agile
projects before, while others had not.

Despite the fact that Scrum was chosen as the basic framework for all teams, only a few
actually implemented the majority of the Scrum practices. For example, most teams were
not using Sprints, but many did have daily Scrums. As there was a lack of coaches, nobody
“forced” the teams to think about the best way for them to work in an agile way. This led to
a situation in which some teams, having strong “agilists”, conformed quite well to Scrum,
but others with less agile experience did not, focusing more on implementation tasks and
more or less ignoring the process. Moreover, as people from different sites had not worked
together before, and came from different cultures, they did not feel comfortable suggesting:
“let’s work our way”.

Part of the interviewees had experience from another, still ongoing, project at one of the
sites (reported in (Paasivaara et al. 2013)). There, the agile transformation had started a few
years earlier with heavy support from an external consulting company with common train-
ings for all, as this was the first agile project at that site. A common Scrum framework was
used by all in the beginning, and later on modified towards Scrumban. After the common
start the teams got more freedom and took responsibility also in customizing their own way
of working. Thus, persons coming from this background to our case project, like many of
the coaches and managers, knew that pure Scrum needs to be customized. Moreover, as part
of the team members had some agile knowledge already, the teams were given quite free
hands to customize, which however did not lead to perfect results.

Close to the end of our study period the coaches were planning to implement similar
ways of coaching between the teams and sites, as that would, e.g., make collaboration and
changing team members between the teams easier. Thus, they aimed to encourage creating
similarities of ways of working in different teams.

Literature emphasizes team autonomy in the way team implements agile practices.
Allowing teams to self-organize was one of the success factors of large-scale agile trans-
formations (Dikert et al. 2016). On the other hand, Conforming to a single approach was
mentioned as a success factor as well (Dikert et al. 2016). Finally, common trainings and
open events were suggested for delivering the same message to everybody to ensure that
agile understanding across the organization was consistent (Dikert et al. 2016).

When comparing the literature findings to our case, we may hypothesize that the lack of
common trainings across the sites, the lack of sufficient and unified coaching and the lack
of a clear common approach led to a lack of unified agile mindset and understanding. Thus,
giving teams autonomy without enough coaching led to a suboptimal agile implementation
in the teams. Interviewees with background from the other transformation within Ericsson,
asked for a common framework, as they thought that model had worked well in the previous
transformation. Such a framework with common and similar trainings across the sites could



Empir Software Eng (2018) 23:2550–2596 2589

have supported the organization in finding a common direction in agile, and thus providing
a common ground for teams to customize the practices later on.

In retrospect, starting with a common agile framework and common trainings seems
rather self-evident, and indeed that seems to be the presumption behind any agile implemen-
tation, for both large and small organizations. However, the fact that our case organization
did not do this, and subsequently run into problems seems to validate this idea, which
is increasingly important as the organization grows, as inter-team coordination otherwise
becomes very difficult or impossible.

Lesson 4: A lack of common agile framework to start with, a lack of common trainings
across sites, and a lack of sufficient and unified coaching may lead to a lack of common
direction in the agile implementation.

6 Conclusions

In this paper, we described the large-scale agile transformation of an Ericsson product devel-
opment program developing a XaaS platform and a set of services towards their future goal
of continuous feature delivery. We presented the steps taken, the challenges faced, and the
mitigating actions taken, as well as four lessons learned that we think could be applicable
to other organizations.

As noted in (Dikert et al. 2016), large-scale agile transformations are seldom easy, and
literature provides little advice on how to successfully proceed. Thus, case studies like this
one can help provide a basis for a deeper understanding of agile transformations in various
contexts that can be used for synthesizing, theory building research.

There is little systematically conducted research on large-scale agile adoption (Dikert
et al. 2016). Practitioner literature suggests several scaling frameworks that are actively pro-
moted by their developers. However, independently documented experiences on the usage,
customization and benefits of these frameworks is still lacking. Thus, finding validated solu-
tions on what the end result of a transformation should look like or what steps to take is
difficult.

As the current agile approaches do not provide good blueprints for what a scaled agile
organization should look like, and the recent scaling frameworks are largely unvalidated,
there seems to be a need for the organization to tailor its agile approach to fit its own
organizational, business and product context. In our case study, for example the various
approaches to team organization and the introduction of business flows can be viewed as
successful customizations.

This need to customize the agile approach has been reported by other organizations
adopting agile in-the-large — successful customization of the agile approach was mentioned
as one of the top success factors in an SLR on agile transformations (Dikert et al. 2016).

While all organizations might feel the need to customize their agile approach the issues
related to the surrounding organization, the complexity of a large product and the need for
specific competences seem to increase the need for method customization. Thus, we think
this need is specifically salient in large-scale agile contexts.

For future research, we suggest to conduct additional case studies on large-scale agile
transformations, as research in this area is scarce. As the literature review showed (Dikert
et al. 2016), only a few case studies exist, even though the topic seems to be highly rele-
vant to large software development organizations moving to agile. Especially, tailoring and
customizing of an agile approach to suit different kinds of large-scale organizations would
be interesting. In addition, the usage of agile scaling frameworks, such as SAFe, LeSS and



2590 Empir Software Eng (2018) 23:2550–2596

DAD, suggested by consultants, interest companies. However, almost no scientific studies
on their usage or suitability to different environments exists.

Acknowledgements The authors would like to thank Ericsson and in particular the interviewees for par-
ticipating in the study. This work was supported by TEKES as part of the Need for Speed (N4S) SHOK
program.

Appendix

A Interview Guide - Round 1 - Transformation Journey

A.1 General Questions

1. Interviewee background (e.g., role and tasks in the organization, history in the organi-
zation)

2. Overview of the transformation (e.g., reasons for transformation, goals of the trans-
formation, starting the transformation, agile trainings and coaching, transformation
steps)

3. Agile methods and practices (e.g., agile principles followed, agile methods used, agile
practices used, your personal opinion about agile)

4. Communication and collaboration (e.g. division of work, inter-team communication
and collaboration, collaboration with other sites, interaction with other people in the
company, knowledge sharing, Scrum-of-Scrums, communities of practice, successes
and challenges in communication and collaboration)

5. Testing and continuous integration (e.g. testing practices, testing levels, test environ-
ment, CI goals and practices, releases, release practices, challenges and successes in
testing/CI)

6. Challenges and solutions (e.g., biggest challenges of the transformation, solutions
implemented/tried, challenges remaining at the moment, solution suggestions)

7. Successes and drawbacks (e.g., successes achieved, benefits of the transformation,
benefits of agile, possible drawbacks of agile)

8. Plans for the future (e.g., plans for the next steps, your opinions on what should be
done, possible stumbling blocks)

9. Final comments (e.g., anything you would like to comment or add)

A.2 Role Specific Topics and Questions

A.2.1 Managers

1. Overview of the organization (e.g., history of the organization, organization structure
earlier, current organization structure)

2. Planning the transformation (e.g., how the transformation was planned, how did you
participate in planning / executing the transformation, roadmap for transformation)

A.2.2 Product Owners

1. The role of a Product Owner (e.g., tasks and duties, collaboration with the teams, your
role as a Product Owner for remote teams, interaction with other people in the company)



Empir Software Eng (2018) 23:2550–2596 2591

2. Feature handling (e.g., the flow of requirements, interaction with customers or users,
interaction with product line, working with backlog, prioritization)

A.2.3 Coaches

1. The role of an agile coach (e.g., how do you work with teams / the rest of the organiza-
tion, how much time do you spend with teams, how much help teams ask from coaches,
how do you promote learning, innovation, and self-organizing, how do you motivate
teams)

2. Agile teams (e.g. team formation)
3. Agile methods and practices (e.g., Are teams using text-book Scrum or have you

modified Scrum practices to fit better to teams’ needs? Are teams allowed to select
frameworks they use (e.g., between Scrum and Kanban)?)

4. Coaching Product Owners (e.g., how do you support Product Owners as a coach, how
much time do you spend with Product Owners, how much help Product Owners ask
from you)

5. Organizational coaching (e.g. how do you participate in organizational coaching, what
do you personally do to build a uniform agile the organization, what are the challenges
in adopting organization wide agile)

6. Collaboration with other coaches (e.g., what, why, how, how often)

A.2.4 Architects

1. The role of an architect (e.g. tasks and duties, collaboration with development and
testing, collaboration with the rest of the organization)

2. The role of architecture (e.g., how is architecture seen in your organization, how is
architecture created in practice, how much effort is used to it)

A.2.5 Product Managers

1. Backlog and release (e.g., requirements handling, who makes the decisions of the
content of backlogs, backlog prioritization, how do you decide what to include in a
release)

2. Relationship with Product Owners (e.g., the division of responsibilities between prod-
uct manager and Product Owners, collaboration with Product Owners, challenges, good
practices, improvement suggestions)

3. Releasing (e.g., release management process in the organization, release frequency,
release practices, release team, challenges and successes, improvement goals, improve-
ment suggestions)

A.2.6 Developers

1. Transition to agile (e.g., biggest changes to you as a developer)
2. Agile team (e.g., your teams’ tasks/responsibilities, describe your team, team structure,

is you team self-organizing, how is your team taking responsibility, team collaboration,
team space, trust among team members)

3. Coaching (e.g., help/coaching received, do you / your team get enough support from
the coaches, improvement suggestions)

4. Meetings (e.g., meetings that you have / meetings that you or your team members
participate, usefulness of the meetings, improvement suggestions)



2592 Empir Software Eng (2018) 23:2550–2596

5. Inter-team coordination (e.g. how it is done, who, when, how often, visibility to what
other teams are doing, challenges, successes, improvement suggestions)

B Interview Guide - Round 2 - Value Workshops

1. Interviewee background (e.g., role and tasks in the organization, history in the organi-
zation)

2. Beforehand knowledge about the values (e.g., What did you know about values before
the value workshop? Do you know why the value workshops were arranged? Do you
know where the values come from?)

3. Value workshops (e.g., What do you think about this event? The contents, the way it
was arranged, what was good / not good, what could be improved / done differently,
benefits of the value workshops for you))

4. Values (How do you feel about the values? Good / bad)
5. After the value workshops (Are you going to do something differently? What should

be done after the workshops?)

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.

References

Abdelnour-Nocera J, Sharp H (2007) Adopting agile in a large organization: balancing the old
with the new. Tech. rep. The Open University. Faculty of Mathematics and Computing,
Department of Computing

Abdelnour-Nocera J, Sharp H (2008) Adopting agile in a large organisation. In: Agile processes in software
engineering and extreme programming, proceedings, LNBIP, vol 9, pp 42–52

Ambler SW (2012) Disciplined Agile Delivery: a practitioner’s guide to agile software delivery in the
enterprise. IBM Press

Banerjee P, Friedrich R, Bash C, Goldsack P, Huberman B, Manley J, Patel C, Ranganathan P, Veitch
A (2011) Everything as a service: powering the new information economy. Computer 44(3):36–43.
https://doi.org/10.1109/MC.2011.67

Beavers P (2007) Managing a large “agile” software engineering organization. In: Agile Conference
(AGILE), 2007 pp 296–303

Benefield G (2008) Rolling out agile in a large enterprise. In: Hawaii International Conference on System
Sciences, Proceedings of the 41st Annual, p 461

Berczuk S, Lv Y (2010) We’re all in this together. Software, IEEE 27(6):12–15
Boehm B, Turner R (2005) Management challenges to implementing agile processes in traditional develop-

ment organizations. Software, IEEE 22(5):30–39
Chung MW, Drummond B (2009) Agile at yahoo! from the trenches. In: Agile Conference, 2009. AGILE

‘09., pp 113 –118
Cunningham W (1992) The wycash portolio management system. In: Proceedings of OOPSLA
Dikert K, Paasivaara M, Lassenius C (2016) Challenges and success factors in large-scale agile transforma-

tions: A systematic literature review. J Sys Softw
Dingsøyr T, Moe N (2013) Research challenges in large-scale agile software development. SIGSOFT Softw

Eng Notes 38(5):38–39
Dingsøyr T, Moe N (2014) Towards principles of large-scale agile development. In: Dingsøyr T, Moe N,

Tonelli R, Counsell S, Gencel C, Petersen K (eds) Agile Methods, Large-Scale Development, Refac-
toring, Testing, and Estimation, Lecture Notes in Business Information Processing, vol 199, Springer
International Publishing, pp 1–8, https://doi.org/10.1007/978-3-319-14358-3 1

https://doi.org/10.1109/MC.2011.67
https://doi.org/10.1007/978-3-319-14358-3_1


Empir Software Eng (2018) 23:2550–2596 2593

Dybå T, Dingsøyr T (2008) Empirical studies of agile software development: a systematic review. Inf Softw
Technol 50(9-10):833–859

Fecarotta J (2008) Myboeingfleet and agile software development. In: Agile, 2008. AGILE ‘08. Conference,
pp 135 –139

Freudenberg S, Sharp H (2010) The top 10 burning research questions from practitioners. Software, IEEE
27(5):8–9

Fry C, Greene S (2007) Large scale agile transformation in an on-demand world. In: Agile Conference
(AGILE), 2007, pp 136 –142

Gat I (2006) How bmc is scaling agile development. In: Agile Conference, 2006, pp 6–320
Goos J, Melisse A (2008) An ericsson example of enterprise class agility. In: Agile, 2008. AGILE ‘08.

Conference, pp 154–159
Greening D (2013) Release duration and enterprise agility. In: System Sciences (HICSS), 2013 46th Hawaii

International Conference on, pp 4835–4841
Hallikainen M (2011) Experiences on agile seating, facilities and solutions: multisite environment. In: Global

Software Engineering (ICGSE), 2011 6th IEEE International Conference on, pp 119–123
Hansen M, Baggesen H (2009) From cmmi and isolation to scrum, agile, lean and collaboration. In: Agile

Conference, 2009. AGILE ‘09., pp 283–288
Hanssen G, Smite D, Moe N (2011) Signs of agile trends in global software engineering research: a ter-

tiary study. In: Global Software Engineering Workshop (ICGSEW), 2011 Sixth IEEE International
Conference on, pp 17–23, https://doi.org/10.1109/ICGSE-W.2011.12

Hibbs C, Jewett S, Sullivan M (2009) The art of lean software development: a practical and incremental
approach. Theory Prac, O’Reilly Media, https://books.google.fi/books?id=sBy4OrfZyYsC

Highsmith J, Cockburn A (2001) Agile software development: the business of innovation. Computer
34(9):120–127

Holmstrom H, Fitzgerald B, Agerfalk PJ, Conchuir EO (2006) Agile practices reduce distance in global
software development. Inf Syst Manag 23(3):7–18. https://doi.org/10.1201/1078.10580530/46108.23.3.
20060601/93703.2

Hossain E, Babar MA, Paik Hy (2009) Using scrum in global software development: a systematic
literature review. In: Proceedings of the 2009 Fourth IEEE International Conference on Global
Software Engineering, IEEE Computer Society, Washington, DC, USA, ICGSE ‘09, pp 175–
184

Jick TD (1979) Mixing qualitative and quantitative methods: triangulation in action. Adm Sci Q 24(4):602–
611

Korhonen K (2012) Evaluating the impact of an agile transformation: a longitudinal case study in a distributed
context. Softw Qual J 21(4):599–624

Kruchten P, Nord RL, Ozkaya I (2012) Technical debt: from metaphor to theory and practice. IEEE Software
29(6)

Larman C, Vodde B (2010) Practices for scaling lean & agile development: large, multisite, and offshore
product development with large-scale scrum. Addison-Wesley Professional Boston. MA, USA

Larman C, Vodde B (2015) Less framework. http://less.works/
Leffingwell D (2007) Scaling software agility: best practices for large enterprises. Addison-Wesley Profes-

sional
Leffingwell D (2015) Scaled agile framework. http://scaledagileframework.com/
Lindvall M, Muthig D, Dagnino A, Wallin C, Stupperich M, Kiefer D, May J, Kahkonen T (2004) Agile

software development in large organizations. Computer 37(12):26–34
Livermore JA (2008a) Factors that significantly impact the implementation of an agile software development

methodology. J Softw 3(4):31–36
Livermore JA (2008b) Factors that significantly impact the implementation of an agile software development

methodology. J Softw 3(4):31–36
Long K, Starr D (2008) Agile supports improved culture and quality for healthwise. In: Agile, 2008. AGILE

‘08. Conference, pp 160 –165
McDowell S, Dourambeis N (2007) British telecom experience report: Agile intervention - bt’s join-

ing the dots events for organizational change Agile processes in software engineering and extreme
programming, proceedings, LNCS, vol 4536, pp 17-23

Moore E, Spens J (2008) Scaling agile: Finding your agile tribe
Murphy P, Donnellan B (2009) Lesson learnt from an agile implementation project Agile processes in

software engineering and extreme programming, LNBIP, vol 31, pp 136-141
O’Connor C (2011) Anatomy and physiology of an agile transition. In: Agile Conference (AGILE), 2011, pp

302 –306

https://doi.org/10.1109/ICGSE-W.2011.12
https://books.google.fi/books?id=sBy4OrfZyYsC
https://doi.org/10.1201/1078.10580530/46108.23.3.20060601/93703.2
https://doi.org/10.1201/1078.10580530/46108.23.3.20060601/93703.2
http://less.works/
http://scaledagileframework.com/


2594 Empir Software Eng (2018) 23:2550–2596

Paasivaara M, Lassenius C (2014) Communities of practice in a large distributed agile software develop-
ment organization – case ericsson. Inf Softw Tech 56(12):1556–1577. https://doi.org/10.1016/j.infsof.
2014.06.008, http://www.sciencedirect.com/science/article/pii/S0950584914001475, special issue:
Human Factors in Software Development

Paasivaara M, Lassenius C, Heikkila V, Dikert K, Engblom C (2013) Integrating global sites into the lean and
agile transformation at ericsson. In: Global Software Engineering (ICGSE), 2013 IEEE 8th International
Conference on, pp 134–143, https://doi.org/10.1109/ICGSE.2013.25

Paasivaara M, Behm B, Lassenius C, Hallikainen M (2014a) Towards rapid releases in large-scale xaas
development at ericsson: A case study. In: Global Software Engineering (ICGSE), 2014 IEEE 9th
International Conference on, pp 16–25, https://doi.org/10.1109/ICGSE.2014.22

Paasivaara M, Väättänen O, Hallikainen M, Lassenius C (2014b) Supporting a large-scale lean and agile
transformation by defining common values. In: Proceedings of the Workshop on Principles of Large-
Scale Agile Development (in press)

Patton MQ (1990) Qualitative evaluation and research methods, 2nd edn. Sage Publications, Newbury Park,
Calif

Petersen K, Wohlin C (2010) The effect of moving from a plan-driven to an incremental software
development approach with agile practices. Empir Softw Eng 15(6):654–693

Poppendieck M (2007) Poppendieck, T. From concept to cash. Pearson Education, Implementing lean
software development

Poppendieck M, Cusumano M (2012) Lean software development: A tutorial. Software, IEEE 29(5):26–32.
https://doi.org/10.1109/MS.2012.107

Prokhorenko S (2012) Skiing and boxing: coaching product and enterprise teams. In: Agile Conference
(AGILE), 2012, pp 191–196

Ranganath P (2011) Elevating teams from ‘doing’ agile to ‘being’ and ‘living’ agile. In: Agile Conference
(AGILE), 2011, pp 187–194

Rodrı́guez P, Mikkonen K, Kuvaja P, Oivo M, Garbajosa J (2013) Building lean thinking in a telecom
software development organization: strengths and challenges. In: Proceedings of the 2013 International
Conference on Software and System Process, ICSSP’13, pp 98–107

Rodrı́guez P, Haghighatkhah A, Lwakatare LE, Teppola S, Suomalainen T, Eskeli J, Karvonen T, Kuvaja
P, Verner JM, Oivo M (2016) Continuous deployment of software intensive products and services: a
systematic mapping study. J Syst Softw

Ryan J, Scudiere R (2008) The price of agile is eternal vigilance. In: Agile, 2008. AGILE ‘08. Conference,
pp 125–128

Schwaber K, Beedle M (2002) Agile software development with scrum. Series in agile software development,
Prentice Hall

Silva K, Doss C (2007) The growth of an agile coach community at a fortune 200 company. In: Agile
Conference (AGILE), 2007, pp 225–228

Stavru S (2014) A critical examination of recent industrial surveys on agile method usage. J Syst Softw
94:87–97

VersionOne Inc (2016) 10th annual “state of agile development” survey. https://versionone.com/pdf/
VersionOne-10th-Annual-State-of-Agile-Report.pdf

Vlaanderen K, Van Stijn P, Brinkkemper S, Van De Weerd I (2012) Growing into agility: process implementa-
tion paths for scrum. In: Product-focused software process improvement, proceedings, LNCS, vol 7343,
pp 116-130

Wenger E, McDermott R, Snyder WM (2000) Communities of practice: the organizational frontier. Harvard
Business Review (Jan-Feb):139–145

Wenger E, McDermott R, Snyder WM (2002) Cultivating communities of practice harvard business review
press. MA, Cambridge

Womack JP, Jones DT (2010) Lean thinking: banish waste and create wealth in your corporation. Simon and
Schuster

Yin RK (2009) Case study research: design and methods, 4th edn. SAGE Publications, Thousand Oaks, CA,
USA

https://doi.org/10.1016/j.infsof.2014.06.008
https://doi.org/10.1016/j.infsof.2014.06.008
http://www.sciencedirect.com/science/article/pii/S0950584914001475
https://doi.org/10.1109/ICGSE.2013.25
https://doi.org/10.1109/ICGSE.2014.22
https://doi.org/10.1109/MS.2012.107
https://versionone.com/pdf/VersionOne-10th-Annual-State-of-Agile-Report.pdf
https://versionone.com/pdf/VersionOne-10th-Annual-State-of-Agile-Report.pdf


Empir Software Eng (2018) 23:2550–2596 2595

Maria Paasivaara is an Associate Professor at the IT University of Copenhagen and an Adjunct Professor
at Aalto University. Her research interests include software engineering processes and practices, continuous
software engineering, agile software development, large-scale agile, DevOps, software projectmanagement,
global software engineering and software engineering educational research. She performs empirical research
in close collaboration with industrial and academic partners and aims at solving real-world problems that are
important to the software industry. She has a D.Sc. degree from Helsinki University of Technology.

Benjamin Behm is a software developer at Agilefant Inc. He did his Master’s thesis on large-scale agile
software development, and now builds tools to support large and small organizations to leverage agile in their
daily operations.



2596 Empir Software Eng (2018) 23:2550–2596

Casper Lassenius is an Associate Professor at Aalto University. His research is in the field of empirical
software engineering, with recent interests including agile software development in the small and large,
continuous software engineering, DevOps, quality assurance, and global software engineering. He has a D.Sc.
degree from Helsinki University of Technology.

Minna Hallikainen is a line manager and a change driver at Ericsson R&D Finland whose passion is to
work with people. Minna practically walks the talk, as she also is a trainer and a coach. Minna is a trainer in
the Ericsson Product Development Leadership program worldwide training and coaching the leaders. Minna
writes publications and is a blogger in the Ericsson Careers blog. Minna is also wellness mentor, gym coach
and personal trainer, who loves boating on her own boat and dancing and playing music.


	Large-scale agile transformation at Ericsson: a case study
	Abstract
	Introduction
	Related Work
	Large-Scale Agile Development
	Motivation to Initiate an Agile Transformation
	Challenges and Success Factors of Large-Scale Agile Transformations

	Methodology
	Background
	Research Goals and Questions
	Data Collection
	Interviews
	Observations
	Documents

	Data Analysis
	Limitations and Validity

	Results
	Motivation
	Agile as Part of the Corporate Strategy
	Dissatisfaction with the Current Way of Working
	The Need to Enable Rapid End-to-end Flow and Continuous Deployment

	Phases of the Transformation
	Phase 0: Knowledge Transfer and Component-Based Teams
	Phase 1: Introducing Agile
	Pilot Team
	Full-scale Roll-out:
	Competence Pool:
	Specialization in Business Flows:

	Phase 2: Finding Common Ground Through Value Workshops
	Phase 3: Towards Continuous Integration and Deployment

	Challenges and Mitigations
	Change Resistance
	Significant Technical Debt
	Lack of a Common Agile Framework
	Lack of Coaching and Coaches
	Lack of Agile Training
	Cross-Site Teams
	Working as ``A Real Team''
	Any Team Cannot Implement any Feature
	Lack of Continuous Integration and Test Automation
	Agile Teams in a Waterfall Organization
	Challenges in Defining the Product Owner Role
	Challenges in Breaking Down the Requirements
	Backlog Challenges
	Constant Change


	Discussion
	Motivation for Agile Transformations
	Large-Scale Agile Transformation Phases
	Challenges and Mitigations in Large-Scale Agile Transformations
	Lessons Learned
	Lesson 1: Experimental Transformation Approach
	Lesson 2: Stepwise Transformation
	Lesson 3: Limited Team Interchangeability
	Lesson 4: Lack of a Common Agile Framework


	Conclusions
	Acknowledgements
	Appendix A1 
	A Interview Guide - Round 1 - Transformation Journey
	A.1 General Questions
	A.2 Role Specific Topics and Questions
	A.2.1 Managers
	A.2.2 Product Owners
	A.2.3 Coaches
	A.2.4 Architects
	A.2.5 Product Managers
	A.2.6 Developers
	B Interview Guide - Round 2 - Value Workshops
	Open Access
	References


