
REV-03.18.2016.0

FedCLASS: A Case Study of Agile and
Lean Practices in the Federal Government

Nanette Brown
Jeff Davenport
Linda Parker Gates
Tamara Marshall-Keim

October 2018

SPECIAL REPORT
CMU/SEI-2018-SR-016

Software Solutions Division
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

http://www.sei.cmu.edu

CMU/SEI-2018-SR-016
SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Copyright 2018 Carnegie Mellon University. All Rights Reserved.

This material is based upon work funded and supported by the Department of Defense under Contract No.
FA8702-15-D-0002 with Carnegie Mellon University for the operation of the Software Engineering Institute, a
federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be con-
strued as an official Government position, policy, or decision, unless designated by other documentation.

References herein to any specific commercial product, process, or service by trade name, trade mark, manu-
facturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring
by Carnegie Mellon University or its Software Engineering Institute.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE
MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO
WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT
NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT
MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK,
OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribu-
tion. Please see Copyright notice for non-US Government use and distribution.

Internal use:* Permission to reproduce this material and to prepare derivative works from this material for in-
ternal use is granted, provided the copyright and “No Warranty” statements are included with all reproductions
and derivative works.

External use:* This material may be reproduced in its entirety, without modification, and freely distributed in
written or electronic form without requesting formal permission. Permission is required for any other external
and/or commercial use. Requests for permission should be directed to the Software Engineering Institute at
permission@sei.cmu.edu.

* These restrictions do not apply to U.S. government entities.

Carnegie Mellon® is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

DM18-0578

mailto:permission@sei.cmu.edu

CMU/SEI-2018-SR-016 i
SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Table of Contents

Acknowledgments v

Executive Summary vi

Abstract x

1 Introduction 1
1.1 Purpose and Overview of This Case Study 1
1.2 Organizations Involved in the Case Study 3

1.2.1 The Software Engineering Institute 3
1.2.2 Department Omega 3
1.2.3 Program Alpha 3
1.2.4 Service Providers 3
1.2.5 The Development Team 4
1.2.6 The Deployment Team 4
1.2.7 Interrelationships 4

2 Rationale for Change 5
2.1 The Inadequacy of the Existing System 5
2.2 Personnel Shortages 5
2.3 Government Information Technology Reforms 6
2.4 The FedCLASS Project 6

2.4.1 Inadequacy of the Current System 7
2.4.2 Personnel Shortages 7
2.4.3 Government Information Technology Reforms 7

3 Project Initiation 8
3.1 Key Events in the Project Initiation Process 8

3.1.1 Determining Software Requirements 8
3.1.2 Assessing the Architecture 9
3.1.3 Aligning the Development Effort with the Organization’s Strategic Plan 9
3.1.4 Attempting to Reuse the Old System 9
3.1.5 Planning for the Future 10
3.1.6 Changing the Development Approach 10

3.2 Adopting New Development Practices 11

4 Establishing the Team 12
4.1 Contracting for Technical Expertise 12
4.2 Creating the Development Team 13

4.2.1 Team Structure and Roles 14
4.2.2 Project Sponsor 14
4.2.3 Product Owner 15
4.2.4 Project Manager 15
4.2.5 Federal and State Agency Stakeholders 15
4.2.6 Team Members 15

4.3 Training the Development Team 16

5 Project Implementation 18
5.1 Starting with RUP 18

5.1.1 Release 1: Inception Phase 19
5.1.2 Release 1: Elaboration Phase 19

CMU/SEI-2018-SR-016 ii
SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

5.2 Moving to Lean and Kanban 21
5.2.1 Release 2: Developing Core Functionality 23
5.2.2 Release 3: Developing Additional Core Functionality 23
5.2.3 Release 4: Addressing Non-Core Functionality 24

5.3 Deployment 25
5.3.1 Experiences with Converting the Old Databases 26
5.3.2 Integrating with the Data Center 27

5.4 Estimating System Completion 28
5.5 Changing Definitions of Success 29
5.6 Preparing for Deployment 30
5.7 Automated Delivery Pipeline and Continuous Integration 30
5.8 Sustainment 31

6 Project Analysis 32
6.1 Analysis of Agile and Lean Adoption 32

6.1.1 Requirements and Test 32
6.1.2 Enhancing Collaboration 33
6.1.3 The Contracting Environment 34
6.1.4 Improving Estimation 34
6.1.5 Metrics and Continuous Improvement 35

6.2 Analysis of Technical Approaches 35
6.2.1 Cloud Development 35
6.2.2 Automation 36
6.2.3 Layered Architecture 36
6.2.4 Open Source Frameworks 37
6.2.5 Data Conversion 37

6.3 Analysis of Leadership 37
6.3.1 Cultural Change 38
6.3.2 The Agile Interface 38
6.3.3 Risk Management 38

7 Summary 40

Appendix A Project Stakeholders 42

Appendix B Project Timeline 45

Appendix C Development Tools 46

Appendix D Training for the Agile Development Team 48

Appendix E Acronyms and Glossary 49

Appendix F Key Project Documents 53

References 54

CMU/SEI-2018-SR-016 iii
SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

List of Figures

Figure 1: A Broad New Pilot 2

Figure 2: Interrelationships Among Organizations Involved in Developing the New System 4

Figure 3: Key Project Initiation Events 8

Figure 4: Hierarchy of the Development Team 13

Figure 5: Team Role Interfaces of the Development Effort for the New System 14

Figure 6: Release Plan Diagram 20

Figure 7: Release 1: Establishing a Candidate Architecture 20

Figure 8: Release 2: Core Functions 23

Figure 9: Release 3: Core Functions 24

Figure 10: Release 4: Non-Core Functions 25

Figure 11: Moving to Go-Live Deployment 26

CMU/SEI-2018-SR-016 iv
SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

List of Tables

Table 1: Agile and Lean Practices Used by the Development Team 22

Table 2: Development Tools Used in the FedCLASS Project 46

Table 3: Identified Training Events for the FedCLASS Project 48

CMU/SEI-2018-SR-016 v
SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Acknowledgments

The authors would like to thank the individuals who provided access to their federal development
project. Department leadership gave the Carnegie Mellon University Software Engineering Insti-
tute broad access to all project documentation and the daily operations of the development team.
Without this open and broad access, it would not have been possible to create this case study. The
authors also wish to thank the members of the development team who talked with us openly about
the project and allowed us to observe daily standup sessions and whole days of team activities.

Finally, the authors would like to express our appreciation for all those who contributed to or re-
viewed this case study and its predecessor. We extend our sincerest thanks to Eric Ferguson, Ken
Nidiffer, Mary Ann Lapham, Annie Drazba, Kurt Hess, Pennie Walters, Gerald Miller, and Todd
Loizes.

CMU/SEI-2018-SR-016 vi
SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Executive Summary

Purpose of This Case Study

This anonymized case study tells the story of an actual development project for a new software
system undertaken by a key program within an executive department of the U.S. federal govern-
ment. The purpose of the project was to develop a new version of the software used by this de-
partment in the performance of its mission, and to do it using iterative, Agile, and Lean
development methods, an approach recently recommended by the federal government at the time
of this study. This case study documents the history and approaches used during the development
of the new system and illustrates the successes and challenges of applying iterative, Agile, and
Lean development methods in an organization that previously used more traditional development
methods. The purpose of this case study is to inform other organizations about lessons learned
from this project, both positive and negative, so that they may benefit from the department’s expe-
rience in piloting iterative, Agile, and Lean practices. This case study was constructed from exten-
sive access to the project and discussions with team members of the project, other staff in the
executive department, and development and testing contractors; documentation reviews; observa-
tions of daily team activities; and analysis of work products from the project.

The Business Need for a New Software System

At the time of the project, the executive department was developing strategic plans to expand the
context of its operations. However, department personnel recognized that the software they were
using, referred to in this report as LEGACY, had reached capacity during peak processing times
and could not easily accommodate changes in its functionality.

A 2010 Federal Chief Information Officer (CIO) report had called for reform of federal infor-
mation technology (IT) management, outlining 25 points that federal agencies should address in
order to produce greater returns on the government’s investment in IT. The department recog-
nized that three points of the plan were especially relevant to the department’s views on moderni-
zation [Kundra 2010]:
• Point 3: Shift to a “cloud first” policy
• Point 6: Develop a strategy for shared services

• Point 15: Issue contracting guidance and templates to support modular development

Recognizing LEGACY’s limitations and motivated by the Federal CIO’s call to reform govern-
ment IT practices, the executive department decided to replace the old system with a to-be-engi-
neered system, referred to in this report as Federal Cloud-based Lean and Agile Shared Services,
or FedCLASS, which would support these new considerations.

A New Approach to Software Development

In the past, the department used traditional waterfall approaches to software development. For
FedCLASS, department executives decided to use a different approach that better aligned with
modern software development practices, including iterative development, Agile and Lean prac-
tices, and cloud-based technologies.

CMU/SEI-2018-SR-016 vii
SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

In particular, the project decided to
• manage the project using the iterative lifecycle and risk-focused techniques of the Rational

Unified Process (RUP) [RSC 1998]

• incorporate Agile practices and principles, including
• integrating business owners into the development process with direct accountability for

meeting delivery goals

• having all FedCLASS team members be dedicated 100% to the FedCLASS Project

• allowing the development team to be self-organizing

• use current technologies and tools, including

• writing FedCLASS in Java
• developing in the cloud

• employing automation tools that support Agile and Lean development practices (e.g., au-
tomated test, continuous integration, and automated build)

Because of the sweeping nature of the changes being made, the department decided to hire con-
sultants and coaches to help implement and institutionalize these new approaches, tools, technolo-
gies, and methods.

Implementation of Agile and Lean Principles of Development

After the project kickoff, the executive department began to implement Agile principles. For the
first three months, all members of the FedCLASS Project were physically co-located. After that,
virtual-presence software connected team members all day via video teleconferencing. All team
members maintained a constant virtual presence, appearing in a “Hollywood Squares” type of vis-
ual projection that enabled them to be constantly accessible and aware of the needs of other team
members. This allowed the team to work as though they were co-located no matter where they
were.

The FedCLASS team did not function according to the traditional siloed structure but instead
worked together as a cross-functional Agile team. All team members were fully dedicated to the
project, were required to have varied skill sets or be open to learning, and performed their work
with complete transparency. The FedCLASS team was responsible for completing all aspects of
each development task (i.e., user stories) through coding, test, integration, and build. There was
no handoff to a separate testing organization.

Individuals in three key positions—the project sponsor, product owner, and project manager—
served as critical change agents for both trying new IT technology and methods and establishing
new relationships within the organizations involved. The team included a few outside consultants
who served as coaches for using the new development practices and introducing new development
technologies and tools.

The concept of fully dedicated team member assignments was a dramatic change for both the ex-
ecutive department and for the testing and development contractors, as it represented a significant
innovation and discontinuity in their historic relationship.

CMU/SEI-2018-SR-016 viii
SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Integration with the Data Center

The cross-functional FedCLASS Agile team integrated the business owners and contractors as
well as functional development and test. However, the operations team responsible for managing
the executive department’s data center and deploying FedCLASS remained aligned with the oper-
ations function rather than aligned with the development team’s processes. Initially, the deploy-
ment team’s personnel were unable to adapt to the Agile practices used by the FedCLASS
development team. However, strong leadership support from the department helped the two teams
figure out ways to bridge the gap between the development team’s Agile methods and the data
center’s traditional methods.

For example, the development team treated the integration of their project into the data center as a
parallel project rather than an inherent and integrated aspect of their Agile and Lean development
process, which allowed the deployment team to retain its traditional approaches. The development
team developed a more structured listing of necessary work, allowing the deployment team to bet-
ter understand the system requirements.

The deployment team also instituted some new approaches to support the deployment of
FedCLASS. Previously, they established and maintained operational environments using manual,
often labor-intensive, processes. During the FedCLASS Project’s development phase, however,
the development team demonstrated the value and benefit of using the systems integration frame-
work Chef to build the FedCLASS operational infrastructure more automatically. The deployment
team adopted these techniques from the development team, which reduced building the
FedCLASS operational environment from a months-long effort to an hours-long effort.

Finally, the executive department’s leadership met regularly with the deployment team’s leader-
ship to ensure effective communication and progress, identify barriers, and assign actions for fol-
low-up.

Key Findings

This executive department chose to follow a new direction in creating FedCLASS, making a fun-
damental break with previous practices and technologies. To accomplish its goal, the department
explored these broad areas of innovation:
• A new role for management: The business owner had extensive experience with LEGACY

and was willing to take direct responsibility for achieving the primary business goal of the
FedCLASS Project. In the past, that responsibility rested with the contractor and was medi-
ated via a formal contract.

• New technology: Cloud-based development, a new programming language, new commercial
products, and new development environments and tools were introduced to build a foundation
for future growth. These new technologies and methodologies were not part of the existing
skills in the department.

• A new development team concept: The department embraced Agile development team con-
cepts, such as having dedicated team members who were self-organized and operating in a
virtual team room.

• New software methodologies: The project piloted and experimented with using an iterative
development lifecycle (RUP), Agile team management (Scrum), and Lean flow (Kanban) as

CMU/SEI-2018-SR-016 ix
SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

well as Agile technical practices derived from XP, including automated test-driven develop-
ment and pair programming. The department used external coaches to provide new
knowledge rapidly for the innovative pilot.

What started as an innovative pilot of new technology and approaches became a broad new trans-
formation developmental effort that effected changes across the executive department. Key ena-
bling factors for the transformation included
• a business owner who had professional IT skills and operational experience in the business area

• a program manager who had experience with new technology
• an environment of government-wide IT reform and a push toward new technology and methods

• a senior leader who was willing to try something different

Many factors and influences came together at the start of the FedCLASS Project that helped it
succeed. They supported and reinforced each other, making it possible for the project to start
down an uncharted path and become a model for change within a department of the federal gov-
ernment.

CMU/SEI-2018-SR-016 x
SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Abstract

This case study tells the story of the development of a critical IT system within an executive de-
partment of the U.S. federal government, using iterative, Agile, and Lean development methods
and cloud-based technologies. This study reports the successes and challenges of using this new
development approach in a government software development environment so that other govern-
ment entities can benefit from the experiences of this project. The study is based on conversations
with team members, observations of team activities, and examination of work products, documen-
tation, and program guidance. The report describes the organizations responsible for creating the
software solution, establishing the development process, and structuring acquisition activities. It
then details the product development process in chronological order and describes the develop-
ment approaches and technologies. It also puts events into the context of external environmental
influences to present a development effort as it confronts real-world challenges. The final section
describes insights gleaned during the research of this case study and includes analysis of the or-
ganization’s experiences with Agile and Lean adoption, technical approaches, and project leader-
ship. These insights may benefit future Agile projects in the federal government and the software
engineering community as a whole.

CMU/SEI-2018-SR-016 1
SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

1 Introduction

This case study tells the story of a software-development initiative undertaken by a key program
within an executive department of the U.S. federal government. The program had outgrown a leg-
acy software system of critical importance to the executive department in the performance of its
mission. It needed a new software platform that would support future growth. Breaking with years
of experience using traditional methods with its legacy system, the department chose to follow an
uncharted path and pilot innovative methods and technologies to develop the new system.

In this case study, we document the department’s decision to use iterative,1 Agile, and Lean de-
velopment methods for the software solution and its experiences with these new methods from
start-up to implementation. We describe the approaches used during software development and
illustrate the challenges and successes of applying these approaches in the context of the federal
government. We also discuss the new culture of leadership that was fundamental to the successful
introduction of these new technologies and development methods.

1.1 Purpose and Overview of This Case Study

The primary purpose of this case study is to inform other organizations about lessons learned,
both positive and negative, so that they may benefit from this experience. It describes both the de-
velopment of a new version of mission-critical software and the use of iterative, Agile, and Lean
approaches in an organization that previously used more traditional development methods. Using
these new development approaches affected not only the development phase but also every activ-
ity from contracting with external organizations, to evaluating and managing progress, to deploy-
ing the software solution. When the project was over, the department had developed new
management roles, new software practices, and new concepts for development teams, while using
new technology and tools. What began as an innovative pilot of new technology and approaches
became a transformative developmental effort that effected changes across this executive depart-
ment. Figure 1 illustrates the innovations and changes undertaken by the project.

1 Throughout this report, we mention some software development terms related to this project. Appendix F pro-

vides definitions.

CMU/SEI-2018-SR-016 2
SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Figure 1: A Broad New Pilot

For this project, the executive department requested that the Carnegie Mellon University Software
Engineering Institute (SEI) observe the development effort and provide guidance as needed in ap-
plying both new technologies and new software-development methods. The department wanted to
shift to a “cloud-first” policy and use a new programming language and new commercial prod-
ucts. It also wanted to follow recent federal recommendations to break with traditional waterfall
methods and instead apply management and technical practices drawn from iterative develop-
ment, Agile and Lean, and Kanban.

We worked with this organization confidentially, and for that reason, we present this case study in
an anonymized form. In addition to changing the names of participants and systems, we removed
references to dates throughout the project lifecycle. We refer to the date of the project kickoff as
“Kickoff,” dates before that as Kickoff – x months, and dates after that as Kickoff + x months.
The project timeline covered by this report spans Kickoff – 36 months to Kickoff + 35 months;
the SEI’s involvement spanned from Kickoff + 11 months to Kickoff + 35 months. This case
study was constructed from extensive discussions with members of the software development

CMU/SEI-2018-SR-016 3
SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

team, with other staff in the department, and with the staff of two external contractors; documen-
tation reviews; observations of daily team activities; and analysis of work products from the de-
velopment effort.

1.2 Organizations Involved in the Case Study

1.2.1 The Software Engineering Institute

The SEI is a federally funded research and development center sponsored by the U.S. Department
of Defense and operated by Carnegie Mellon University in Pittsburgh, Pennsylvania. The SEI
helps advance software engineering principles and practices and serves as a national resource in
software engineering, cybersecurity, and performance improvement. We work closely with na-
tional defense and federal government organizations, industry, and academia to continually im-
prove software-intensive systems.

1.2.2 Department Omega

In this case study, we refer to the executive department as Department Omega. Department
Omega has a broad mission to administer and enforce one category of federal laws and to ensure
the reliability and security of one critical aspect of U.S. infrastructure. The secretary of Depart-
ment Omega is a cabinet-level official, reporting to the president of the United States. The depart-
ment has a strategic goal of maximizing its efficiency and expanding its scope. These goals are
highly coupled as
• increases in efficiency allow for increases in scope
• increases in scope demand greater efficiency
One tactic the department has used to support this strategy is to seek new tools and methods to in-
crease efficiencies. The software project that was the subject of this case study involved both new
tools and new development methods.

1.2.3 Program Alpha

In this case study, we refer to the component of Department Omega responsible for the software
development initiative as Program Alpha. Program Alpha is administered by Department Omega
to perform a vital function of the U.S. federal government. It supports the mission of Department
Omega by fostering efficient management of one of the primary resources that the department
regulates. Program Alpha provides leadership and oversight of the information technology (IT)
solutions used in performing its day-to-day work, such as the software developed during this case
study. It also acts as the ultimate program manager responsible for balancing future investments in
IT solutions with operational priorities and sustainment.

1.2.4 Service Providers

Two service providers have long-standing roles in support of both Department Omega and Pro-
gram Alpha: a development contractor and a testing contractor. Neither contractor is a private
contractor in the most common understanding of the term but rather stands somewhere between
the public and private spheres. Department Omega and these contractors develop plans annually
to define the scope and level of support that each contractor will deliver to Department Omega.
Both contractors participated in the software development initiative.

CMU/SEI-2018-SR-016 4
SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

1.2.5 The Development Team

A development team was established to carry out the development of the new software system.
Including members of Program Alpha, the development and testing contractors, and consultants in
iterative, Agile, and Lean methods, this team was cross-organizational and cross-functional. It
planned to use new development methods to build new software systems to meet the department’s
future business needs.

1.2.6 The Deployment Team

The deployment team was drawn from a component of Department Omega that manages its data
center and oversees its IT systems for compliance with security, configuration management, and
deployment standards. While the development team created new software, the deployment team
created new infrastructure at the data center. The new software would be deployed in the deploy-
ment team’s infrastructure. And while the development team used iterative, Agile, and Lean
methods, the deployment team used Department Omega’s traditional methods until later in the de-
ployment process, creating challenges when the new software neared its deployment phase.

1.2.7 Interrelationships

Figure 2 shows the relationships among the organizations associated with the new software pro-
ject. The director of Program Alpha (the business owner) and the manager for IT development
collaborated to oversee the project.

Figure 2: Interrelationships Among Organizations Involved in Developing the New System

CMU/SEI-2018-SR-016 5
SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

2 Rationale for Change

This section describes the department’s decision to develop a new system and move to new tech-
nologies and development methods. It also covers the factors driving this decision, including the
inflexibility of the existing system, personnel shortages that strained maintenance of the existing
system, and a desire to participate in government IT reforms.

2.1 The Inadequacy of the Existing System

The development contractor designed and built LEGACY in the mid-1990s with testing assistance
from the testing contractor. LEGACY employed a combination of batch programs in Common
Business-Oriented Language (COBOL) and, later, a web client on a Java 2 Enterprise Edition
(JEE) platform. LEGACY was hosted in the operational data center administered by Department
Omega.

As explained in a business case document prepared by Program Alpha, LEGACY had reached ca-
pacity in processing speed during peak processing times. The existing system could not easily ac-
commodate changes in functionality. It was unable to grow in capacity sufficiently to continue
supporting one of the goals of Department Omega—maximizing its ability to administer and en-
force one category of federal laws. The inability to grow capacity in the system also impeded
plans to expand services to support the needs of other federal and state agencies.

Program Alpha developed strategic plans to make multiple application improvements to
LEGACY because it could no longer accommodate the growth goals of the program. These plans
included
• increasing the maximum capacity of the system for processing data
• improving the correlation of data with data from other systems
• creating a single data repository for business intelligence queries
• providing better business intelligence for tactical decision making
• developing the ability to change business rules without code changes
• improving production and customer support
However, analysis of LEGACY’s capabilities showed that the system could not support these
goals without a huge investment in time, money, and personnel.

2.2 Personnel Shortages

Department Omega was formed from a consolidation of other government agencies, and the IT
operations from those agencies merged into a single organization. This government-wide effort to
consolidate data centers prompted Department Omega to decommission the data center that
hosted LEGACY and to transfer its duties to another of its data centers in a different part of the
country. This merger involved the decision to close the offices of one agency and move all opera-
tions to another agency. While personnel in the first agency were offered jobs in the second
agency, many chose not to move—leaving the new, merged organization significantly under-

CMU/SEI-2018-SR-016 6
SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

staffed. This personnel shortage severely affected the ability of Department Omega’s IT Opera-
tions to overhaul the existing system or to stand up and operate a development and test environ-
ment for Program Alpha’s new system in a timely manner.

2.3 Government Information Technology Reforms

IT plays a large part in federal agencies’ ability to deliver products and services effectively and
efficiently, and it offers immense capabilities to infrastructure and internal business systems. Un-
fortunately, IT system developments in the federal government are fraught with budget overruns
and time delays in achieving initial operational capability. According to a July 2008 Government
Accountability Office report, 48 percent of the federal government’s major IT projects have been
re-baselined at least once [GAO 2008].

From 2009 to 2011, the broad government oversight community generally recognized that the IT
acquisition management processes were broken and the U.S. chief information officer (CIO)
should aggressively change processes and policies. On December 10, 2009, the Federal CIO re-
ported the following to the Federal CIO Council:

The government’s management of information technology illustrates how a lack of enabling
technology and transparency has led to poor results. Historically, the closed, secretive and
compliance-based management approach, used to oversee more than $70 billion in federal
IT investments, has not served taxpayers well. If an IT project was identified as being poorly
planned or poorly managed, it was placed on a “Management Watch List,” which was little
more than a static PDF document on a website. This compliance-based approach was car-
ried out behind closed doors with little evidence of improved performance. [Kundra 2009]

In 2010, the Federal CIO issued a report calling for reform of federal IT management [Kundra
2010]. The plan outlined 25 areas that federal agencies needed to address to produce greater return
on the government’s investment in IT. Several of the 25 areas, or points, were highly inspirational
to the development plans for Department Omega’s new software system, including
• Point 3: Shift to a “cloud-first” policy
• Point 6: Develop a strategy for shared services

• Point 15: Issue contracting guidance and templates to support modular development

In addition, the White House issued a memorandum to the heads of executive departments and
agencies on August 8, 2011, to clarify the primary areas of responsibility for agency CIOs across
the government, as identified in the Federal CIO’s 25-point plan for implementing IT reform. Is-
sues in the reports included (1) the lack of usage of enabling technologies, (2) poor IT acquisition
management processes, and (3) the failure to recognize that IT is and will be the principal enabler
for advanced capabilities needed by customers.

2.4 The FedCLASS Project

To indicate the department’s intention to address key points in the Federal CIO’s call for reform
[Kundra 2010], we refer to the project to replace LEGACY as FedCLASS (Federal Cloud-based
Lean and Agile Shared Services). The change factors described in Section 2.3 influenced key de-
cisions on the FedCLASS Project: developing a new system rather than overhauling the old sys-
tem, overcoming personnel shortages, and participating in government IT reform.

CMU/SEI-2018-SR-016 7
SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

2.4.1 Inadequacy of the Current System

As described in Section 2.1, Department Omega determined that continuing to enhance LEGACY
would not support future business needs and decided to engineer a new solution. The department
originally envisioned the FedCLASS Project as a major overhaul of an existing system—not the
creation of an entirely new system. However, once the project was underway, it became apparent
that very little of the old system could be salvaged for incorporation into the new system. Depart-
ment Omega did, however, continue to maintain and operate LEGACY until it was replaced by
the reengineered functionality and enhanced capability of FedCLASS.

2.4.2 Personnel Shortages

Data center personnel shortages were one of the factors that drove the FedCLASS team’s decision
to use a public provider of cloud services to host its development and test environments. The use
of cloud services allowed the development team to begin development almost immediately, with-
out the lag time associated with acquiring and building a development environment.

2.4.3 Government Information Technology Reforms

In addition to personnel shortages, the Federal CIO’s report also drove the team’s decision to uti-
lize cloud computing. Though initially the use of the cloud environment was for development and
test purposes, the project team hoped that Department Omega would also permit a production de-
ployment to the cloud.

In addition to cloud computing, the Federal CIO’s report was cited as a strong rationale for trying
a different path than Department Omega’s traditional Rapid Application Development (RAD)
software development process. The RAD approach focused on delivery at the end of develop-
ment, whereas the new approaches from the government’s IT reform initiative focused on deliver-
ing working software early and throughout development. This drove the decision to pilot
alternative development approaches including iterative, Agile, and Lean on the FedCLASS Pro-
ject.

CMU/SEI-2018-SR-016 8
SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

3 Project Initiation

This section describes the initial stages of planning and exploration for the FedCLASS Project. It
includes determining project scope and requirements, assessment of the LEGACY system and its
fit with FedCLASS Project needs, and selection of a development approach.

3.1 Key Events in the Project Initiation Process

This section describes key events from project initiation to the launch of the development effort.
Figure 3 shows where the project initiation events fit into the development timeline (see Appendix
B for a complete timeline). While the FedCLASS Project is the focus of this case study, it was ex-
ecuted in the larger context of Program Alpha’s long-term IT strategy, and the capabilities devel-
oped for FedCLASS were designed to align with its future role in that overarching strategy.

Figure 3: Key Project Initiation Events

3.1.1 Determining Software Requirements

Three years before the kickoff of the FedCLASS Project, LEGACY was reaching capacity in pro-
cessing data during peak periods. This triggered a series of actions to identify and document the
department’s business needs for future growth capability. Requirements gathering and planning
for the revision of the old system began at Kickoff – 18 months. By Kickoff – 6 months, Program
Alpha had determined its system requirements for new capabilities. A spreadsheet summarized
the program’s new software requirements; included drivers and goals, business requirements,
technical requirements, and constraints; and noted the source for each requirement statement. Ac-
cording to the Statement of Need in the project charter,

[The Program Alpha] system has reached capacity in processing [data] during peak periods
due to its lack of flexibility to accommodate changes in the system. This [affects other state
and federal] agencies, [Department Omega’s other] systems, budgets for projects and pro-

CMU/SEI-2018-SR-016 9
SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

duction support as well as [Department Omega] operational personnel. The impact is a re-
duced operational window that impairs [Department Omega’s] ability to [perform its mis-
sion] in a timely manner.

3.1.2 Assessing the Architecture

In parallel with the requirements gathering, a number of studies and analyses were performed to
investigate options for improving LEGACY. Department Omega hired a technology research firm
to conduct two architecture studies to examine alternatives for technical solutions that included a
range of options from continuing to operate and enhance its application services to using commer-
cial service providers. One of the studies was initiated at Kickoff – 24 months and one at Kickoff
– 17 months.

Architecture Analysis 1

The technology research firm was hired to complete a case study to gain insight into how similar
organizations handled the kind of business operational systems that support Program Alpha’s soft-
ware. The case study provided insight into alternative approaches to meeting Program Alpha’s IT
infrastructure requirement for growth in processing capacity. The Program Alpha Architecture
Review Case Study was delivered at Kickoff – 20 months. A key part of the study was a compari-
son of the program’s architecture approach with market research on similar batch workloads. The
study’s findings helped to shape the future direction for the program’s infrastructure.

Architecture Analysis 2

After its architecture case study, the technology research firm was again hired to perform a cost
assessment and benchmark study of Program Alpha beginning in Kickoff – 17 months. During
this study, which lasted from Kickoff – 17 months to Kickoff – 12 months, the technology re-
search firm conducted another architectural assessment and analyzed four alternatives.

3.1.3 Aligning the Development Effort with the Organization’s Strategic Plan

A presentation—Project Concept FedCLASS—was prepared to gain the support of Department
Omega’s IT Governance Board for the FedCLASS Project. The presentation identified key points
of contact for the project, high-level business needs that the project should meet, and desired out-
comes for the project. The presentation also tied the project to the Department Omega Strategic
Plan, spanning three years before and two years after the project kickoff, and made a specific con-
nection to “Strategic Goal 3: Maximize [performance of Department Omega’s mission]; Strategy:
Seek new technologies to streamline, modernize, and improve business processes and systems.”

3.1.4 Attempting to Reuse the Old System

To prepare to meet Program Alpha’s future needs for IT infrastructure, Department Omega
worked with the development and testing contractors on a number of studies and exploratory pro-
jects. Some of this work involved attempts to use LEGACY in ways that would overcome its
weaknesses. The contractors, in partnership with Department Omega, started a project to move
the old COBOL application to the mainframe as a first step to addressing performance and data-
base deadlock issues. The direction to move to the mainframe was, in part, the recommendation of
Architecture Analysis 2, completed by the technology research firm mentioned in Section 3.1.2.

CMU/SEI-2018-SR-016 10
SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Studies demonstrated that running significant components such as data correlation on the main-
frame confirmed a gain in performance and a resolution of the deadlock issues. The development
contractor proposed a rewrite “as is” of LEGACY in Java over three years, including moving it
from UNIX to the mainframe. Department Omega’s database administration group and its re-
sources were involved in the proposal to move LEGACY to the mainframe and provided technical
assistance and review.

Department Omega reviewed that proposal and a prototype but decided not to move forward with
the project for several reasons:
• The development contractor’s proposal solved some of the problems but was informally pro-

jected to cost $40 million and take four to five years to complete. Department Omega consid-
ered that estimated cost too high for the business value to be achieved from the project.

• The proposed solution would put the rewritten application on the same computing platform as
other key Department Omega applications that were experiencing production issues.

• The proposal did not fully address business requirements for future flexibility and expandabil-
ity.

3.1.5 Planning for the Future

By Kickoff – 12 months, Program Alpha faced the decision of how to address the needed expan-
sion of its infrastructure capability. Its original software had grown through continual enhance-
ments and additions, and the original U.S. Code requirements had expanded the applicable federal
laws over the first 15 years of the Program Alpha system’s operation to include providing services
to state agencies and individuals. The consensus among Department Omega staff was that contin-
uing incremental enhancements of LEGACY—a batch-job-based, 20-year-old system—would not
achieve the goals of supporting the ever-expanding requirements of the department’s mission
through new laws and future business needs. LEGACY, which could not handle the increasing
processing volume and throughput speed, was judged to lack the flexibility to accommodate fu-
ture changes in the system. As we noted in Section 2.4, the goals of the FedCLASS Project were
to enable additional sources of data, increase data volume, and improve the effectiveness of data
correlation.

3.1.6 Changing the Development Approach

After performing an analysis of alternatives, Department Omega decided to develop a completely
new solution to the problems facing LEGACY and named it the FedCLASS Project. The organi-
zation decided to take a greenfield approach to the new system and start with a blank slate, with-
out any constraints imposed by prior work. The primary business driver was to achieve a solution
that provided flexibility to expand and change to meet future needs.

Within the context of broad government IT reform, Department Omega decided to pilot the use of
innovative technology, software methodology, and development team concepts and to take on
new management responsibility and relations. This pilot would include developing a major re-
write of LEGACY as a Java solution and using cloud technology for the development environ-
ment, in keeping with the Federal CIO’s recommendation “Point 3: Shift to a ‘cloud first’ policy”
[Kundra 2010]. In addition, the new effort would follow a tailored Agile approach that used risk-

CMU/SEI-2018-SR-016 11
SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

focused RUP techniques as the basis of structuring the development team and managing the pro-
ject.

In another significant break with traditional system development, Department Omega took direct
responsibility for managing the project and for integrating business owners in the development
process. Department Omega hired consultants, according to the contracting actions described in
Section 4.1, for guidance on how to help its staff get directly involved using innovative manage-
ment approaches and new technologies and tools.

3.2 Adopting New Development Practices

As part of project initiation, Department Omega reviewed its strategic goals for IT development,
in particular the goal to seek new technologies to improve business processes and systems and the
goal to act on the Federal CIO’s report calling for reform of federal IT management [Kundra
2010]. For these reasons, Department Omega committed to incorporating iterative and Agile prac-
tices into its software development approach in order to improve efficiency and accelerate deliv-
ery.

Another driver for adopting new processes was Department Omega’s desire to have deeper en-
gagement with and responsibility for the FedCLASS Project. The department thought that the
deeply collaborative, cross-functional teams used in Agile methods would facilitate this relation-
ship shift.

Although Department Omega saw advantages in adopting Agile methods, it initially decided to
institute an iterative RUP-based approach on the FedCLASS Project and hired a coaching firm
with experience in this methodology. RUP is not typically considered to be an Agile approach, as
it is based on defined lifecycle stages and uses considerably more formal documentation than Ag-
ile methodologies. The initial coaching contract called for the delivery of
• use cases

• a Microsoft Project plan
• formal test case documentation and reporting

• formal business rule documentation

• a formally defined quality assurance (QA) process

• architectural documentation (in line with the RUP view-based approach)

While not an Agile methodology, the iterative approach of RUP represented a move to incremen-
tal delivery as opposed to the waterfall approach previously employed by Department Omega.
RUP’s risk-based, architecture-centric perspective was also felt to be well-suited to address the
needs of the FedCLASS Project. Although using RUP as a methodology, the project was commit-
ted to incorporating Agile values of collaboration and self-organization as well as selected Agile
practices such as daily standups, the definition of done, and the product owner role.

CMU/SEI-2018-SR-016 12
SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

4 Establishing the Team

Before development of the new system could begin, the department needed to acquire technical
expertise, establish roles and team structure, and conduct training. This section describes these ac-
tivities.

4.1 Contracting for Technical Expertise

Department Omega’s IT development group recognized that to be successful they would need to
augment the development and testing contractors’ skills and knowledge of iterative and Agile
software development methods and cloud-based technology. The process of finding and acquiring
these skills and knowledge began before the project kickoff.

Contracting has sometimes been a problem area for government organizations that want to try it-
erative, Agile, Lean, or other nontraditional approaches. Department Omega follows the standard
Federal Acquisition Regulation (FAR). Agile development calls for valuing “customer collabora-
tion over contract negotiation” [Agile Manifesto 2001] and assumes the capacity for performers to
respond rapidly to change. Department Omega’s IT development group performed pre-work to
resolve this process disparity so that contractor teams could use Agile methods and would not
have to stop work mid-project to wait for new or renegotiated contracts. This pre-staging of flexi-
ble contract support would allow the FedCLASS Project to draw on special expertise quickly.
With contract vehicles in place, task orders could be placed on contracts whenever special support
was required.

Major contract actions required for supporting the project’s nontraditional approach to software
development included the following:
• contracts for coaching and technology transition support
• contracts for development tools

• contracts for a cloud service provider
• contracts for expert services, such as independent estimates and special tool support

• other contracts as required to rapidly address the needs of the development team

The following contracts and agreements were established for the FedCLASS Project:
• coaching contractor: This contractor would provide coaches to support the development team

in using RUP and Agile development practices and train the team to work with new develop-
ment technologies and tools. The contract was a direct award to a minority-owned business
that provides professional services in IT areas. It was a firm-fixed price for services, with a
not-to-exceed cost for reimbursable travel and other purchases, such as software, hardware,
and licenses. The contract was based on a performance work statement.

• external development and testing contractors: The development contractor would provide
software developers, system architects, and database design. The testing contractor would
provide software testing services for the new system. The agreements with these entities were
not contracts in the legal use of the term. Department Omega had a long-standing relationship

CMU/SEI-2018-SR-016 13
SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

with these contractors established by statute. Annual plans were used to define the scope and
level of support from each contractor.

• Department Omega’s IT operations: The Omega data center was responsible for creating the
infrastructure to support the new system and for performing deployment to production. The
agreement for data center hosting of the FedCLASS production system was also not a con-
tract in the legal use of the term. It was a service-level agreement established between Pro-
gram Alpha and Department Omega’s data center.

4.2 Creating the Development Team

After these foundational tasks were completed, a development team was established to carry out
the FedCLASS Project. The team adopted roles and organizing concepts from two widely used
methodologies. From the RUP approach, the FedCLASS Project adopted the practice of grouping
work in development increments based on risk. From the Scrum approach, the FedCLASS Project
adopted the concept of dedicated team members working on a self-directed development team and
the roles of product owner and team coach.

The concept of assigning fully dedicated team members was a dramatic change for both Depart-
ment Omega and the development and testing contractors. The traditional approach was to matrix
an individual with a specific skill onto multiple projects at the same time. Department Omega also
historically assigned development projects fully to the one of the contractors. The contractor’s
leadership would then take responsibility for managing the project and accomplishing daily tasks.
The use of a dedicated, empowered, and self-organizing team within Department Omega repre-
sented a significant innovation in the relationship between the department and these contractors.
Figure 4 shows a hierarchical view of the development team.

Figure 4: Hierarchy of the Development Team

CMU/SEI-2018-SR-016 14
SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

4.2.1 Team Structure and Roles

The FedCLASS Project had to address the needs of the project owner and sponsor, the interfacing
agencies (stakeholders) who would use the new system, and Department Omega’s data center for
hosting the production applications. Although Figure 4 shows a hierarchical relationship, the pro-
ject did not function on a day-to-day basis according to the traditional hierarchical structure. The
team operated consistently with Agile and Lean development methodologies. Members completed
work by collaborating in cross-functional teams, based on integrated development that included
requirements (user stories), coding, testing, and deployment.

The broad roles within the dedicated cross-functional team, shown in Figure 5, included
• project sponsor (not shown), who provides direction and access to resources
• product owner, who has the responsibility of the business owner

• project manager, who has the responsibility of overseeing the development of the system

• federal and state agency stakeholders, who interfaced with the development team through the
product owner

• members of the development team, including an architect, developers, a database administra-
tor, and testers from within Department Omega and from integration contractors

• coaches and technology subject-matter experts (SMEs)

These broad roles are consistent with the Scrum approach to management concepts. We describe
each role in more detail below to provide insight on how the development team accomplished
work and delivered functioning software capability to the Program Alpha business owner.

Figure 5: Team Role Interfaces of the Development Effort for the New System

4.2.2 Project Sponsor

At the highest level in Department Omega, the project sponsor was the Assistant Commissioner of
the department. The project sponsor was not involved in the daily management of the FedCLASS
Project but provided funding, resources, and political support for the team at a higher level.

CMU/SEI-2018-SR-016 15
SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

4.2.3 Product Owner

The Agile Scrum methodology defines a role called product owner. “The product owner has re-
sponsibility for deciding what work will be done” [Baker 2014]. At the start of development, the
role of product owner was assigned to the director of Program Alpha, who was responsible for the
performance of Program Alpha. The product owner was supported by members of Program Al-
pha’s operational staff, who were assigned the role of product owner delegates and were involved
in the business aspects of the program’s day-to-day operation.

The product owner, with support from the product owner delegates, maintained the business re-
quirements for FedCLASS in what Agile methodology calls the product backlog, “an ordered list
of everything that might be needed in the product” [Schwaber 2013]. One of the product owner’s
primary functions in an Agile environment is to ensure that the product backlog is organized and
ranked by business value. The development team’s responsibility is to work on the items of high-
est priority in the product backlog, in accordance with the business owner’s priorities.

4.2.4 Project Manager

The role of project manager was assigned to a technically experienced federal employee of De-
partment Alpha, who was responsible for overseeing the development of the system. Activities
included overseeing the development team, addressing roadblocks, and reporting to the product
owner and upper management.

Together, the project sponsor, project owner, and project manager served as key change agents
[London 1988] for both trying new IT technology and methods and establishing new relationships
among the organizations involved. The three roles and the individuals filling those roles remained
key influences in the move to adopt new and innovative approaches to performing IT projects.

4.2.5 Federal and State Agency Stakeholders

Program Alpha focuses on providing services to the federal and state agencies. With this broad
customer base, the program has a large number of data partners who depend on Program Alpha’s
services for their organizational health. The existing stakeholder communities of Program Alpha
participated in the transition from LEGACY to FedCLASS. The goal of developing the new sys-
tem was to retain the existing application interfaces and limit any impact on the external data part-
ners.

4.2.6 Team Members

The development team included 16 people:
• 4 members from Department Alpha, including the product owner and project manager
• 5 members from the development contractor, including software developers, system archi-

tects, and database designers
• 2 members from the testing contractor, which provided testing services and software devel-

opers

CMU/SEI-2018-SR-016 16
SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

• 5 coaches and SMEs on commercial software (e.g., Oracle2) from a coaching contractor,
who served as coaches on using Agile and Lean development practices and introducing new
development technologies and tools

The development team operated as a cross-functional team, in which each member was aware of
every role and team members contributed based on the needs of the work to be performed. This
required each team member to have varied skill sets or at least be open to learning new skills. The
team controlled the work through user stories that were placed in a backlog. Initially in accord-
ance with RUP, these stories were prioritized by architectural risk. Later in the project, prioritiza-
tion shifted to focus on business value as determined by the product owner. The team members
worked together with complete transparency. They did not “hand off” user stories within the
team. Once a team member took a story from the backlog, he or she handled it until it was ac-
cepted by the product owner or placed back in the backlog. All stories that had been started in the
work flow were addressed in every daily standup until they were accepted. The output from the
development effort was working software and supporting information.

A significant number of team members who started with the dedicated FedCLASS development
team had experience with LEGACY. At various points in the team’s life, new members and
coaches were added to support the development needs or to replace individuals who moved to
other commitments. With additional support for testing, the team size grew to approximately 20
members by Kickoff + 18 months.

Formation of the development team began at Kickoff – 2 months. When Department Omega
chose to directly manage this team, it set aside past practices for personnel assignment. In the tra-
ditional process, Department Omega and the development and testing contractors assigned people
and managers to the work project. Now, candidate team members were selected from across the
United States through interviews. Criteria for team selection included candidates’ openness to the
use of Agile methods.

4.3 Training the Development Team

At the kickoff, team members attended the first team meeting via teleconference and discussed the
travel logistics for starting the work. It was the first session of a three-month training period and
team-forming experience. Appendix D contains a list of the training events and activities. The
team’s first in-person meeting occurred at the development contractor’s facility at Kickoff + 11
days.

The 16 individuals tentatively selected for the FedCLASS Project were instructed in the concepts
of Agile practices and forming a dedicated team working in a common team room. (See Section
4.2.6 for information about the makeup of the development team.) All team members were fully
dedicated to the FedCLASS Project and were physically co-located for three months. Later, a vir-
tual team room was established, enabling all team members to work collaboratively. By the time
the project was up and running, the virtual team was connected all day via video teleconferencing

2 Throughout this report, we mention some of the tools used by the development team. Appendix C describes

their typical uses.

CMU/SEI-2018-SR-016 17
SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

from 9:00 a.m. to 7:00 p.m. Eastern Time to allow for collaboration that crossed four time zones.
The daily team standup occurred at 11:15 a.m. Eastern Time.

As team members got to know each other, they also began to learn the practices for working in an
Agile environment. The team received training in Agile practices and the RUP through an Agile
Development Simulation Workshop. Additional training was provided during the first iteration of
the Inception Phase, including modules that covered iterative development, phases and iterations,
daily standup concept and content, releasing iteratively, and estimating effort.

CMU/SEI-2018-SR-016 18
SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

5 Project Implementation

The development team initially used a RUP lifecycle with multiple phases and iterations and
planned for three releases: two internal releases and a third release for external deployment. The
RUP approach was blended with Agile practices, primarily drawn from Scrum. As the project
progressed, the RUP approach was discontinued and the team adopted the use of Lean and Kan-
ban. Release plans were also modified as the project progressed.

5.1 Starting with RUP

This section summarizes the initial RUP-based approach. The RUP process has four phases, each
with a different focus [RSO 1998]:
• Inception Phase, focused on establishing project viability and mitigating business risk
• Elaboration Phase, focused on establishing a technical approach and mitigating architecture

risk
• Construction Phase, focused on developing a usable solution and implementing risk mitiga-

tion

• Transition Phase, focused on successful release and mitigating deployment risk

Each phase contains a varying number of iterations in which to accomplish the work. An iteration
is a set of activities with a plan and evaluation criteria, comprising a complete development cycle,
from requirements gathering to implementation and testing. The coaching contractor defined an
iteration as “like a small project producing a stable integrated software product, assessed to evalu-
ate its success in meeting the clear objectives defined at iteration start.”

The technology transfer contract with the coaching contractor included specific training and sup-
port on iterative development concepts and risk-driven development in the context of RUP
phases. To help organize and train the team, the initial coaching contract included creating an iter-
ation plan by following a template.

From Kickoff + 2 weeks to Kickoff + 10 months, the process in use was largely based on RUP,
although the team also incorporated some Agile Scrum-based practices. The RUP-based Inception
Phase of approximately seven weeks consisted of 5 iterations of varying length. This was fol-
lowed by a RUP-based Elaboration Phase of approximately 7.5 months, consisting of 14 iterations
of varying length.

The process used during this period was risk centric in keeping with the RUP approach to devel-
opment. Nonfunctional requirements were elicited, prioritized, and captured in an architectural
concerns survey. The development team defined risks to mitigate and tracked them in each of the
14 iteration plans of the Elaboration Phase. The team captured requirements using use cases.
Elaboration efforts focused on constructing and proving a viable candidate architecture. The team
pursued Pattern-Enabled Development as a design approach, pushing functionality into the archi-
tectural framework with commensurate constraints on the design latitude of the development
team.

CMU/SEI-2018-SR-016 19
SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

5.1.1 Release 1: Inception Phase

The Inception Phase consisted of five iterations from Kickoff + 2 weeks to Kickoff + 3 months.
During this phase, iterations were scheduled for time periods of varying length, and sometimes
there was a delay between the early iterations. The development team started working as a dedi-
cated team with training woven into the work iterations. The team created a plan associated with
each iteration of the Inception Phase to guide the work. The goals for this phase included under-
standing project objectives, choosing tools, setting up the development environment, and creating
release plans.

During the first iteration, the development team worked with an external coach and identified 73
risks related to FedCLASS, 45 current system problems, and 24 desired outcomes with evaluation
criteria. The team also started identifying stakeholders for the FedCLASS Project and holding
meetings with them to settle on project outcomes.

During the Inception Phase, the team accomplished the following tasks:
• reviewed the business requirements, identified stakeholders, and agreed on the scope of the

FedCLASS solution

• identified architecturally significant requirements and defined a candidate architecture

• identified and installed multiple project development and tracking tools
• developed functional and nonfunctional test ideas, strategy, and candidate tools

• received training on

− use cases, Pattern-Enabled Development, software architecture principles, and develop-
ment approaches

− estimating and project-sizing techniques, including planning poker, domain analysis, and
use-case points

• started release planning based on the identified technical risks

• visited cloud-service providers

• began using a fail-fast approach3 to trying and learning new ideas

The fifth and final iteration in the Inception Phase of Release 1 ended at Kickoff + 3 months. By
that time, team members had set up cloud-based environments for development and QA and cho-
sen software development tools. They determined means and methods to measure acceptable
quality levels, agreed on the estimated size (i.e., effort) for the project, and created a release plan
with initial content for each release.

5.1.2 Release 1: Elaboration Phase

In the Elaboration Phase, iterations were scheduled for different time periods, and sometimes
there was a delay between the early iterations. Release 1 was planned as the output of the Elabora-
tion Phase. It was intended as an internal release and not for external deployment. Figure 7 illus-
trates the team’s release plan.

3 “Failing fast is a non-intuitive technique: ‘failing immediately and visibly’” [Shore 2004]. The team used this idea

in the context of trying something new to learn what works by doing.

CMU/SEI-2018-SR-016 20
SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Figure 6: Release Plan Diagram

Release 1 focused on addressing technical risks in two areas: (1) those identified as high risk in
relation to how LEGACY performed and (2) those related to technology for the new FedCLASS
architecture. Figure 7 illustrates the iterations of Release 1 and its fit within the overall project
timeline.

Figure 7: Release 1: Establishing a Candidate Architecture

The Elaboration Phase of Release 1 consisted of 14 iterations of varying length that ran from
Kickoff + 3 months to Kickoff + 10 months. As in the Inception Phase, the development team cre-
ated a plan associated with each iteration of the Elaboration Phase to guide the work.

Iteration 1 focused on proving that the team could implement and test a significant scenario in the
cloud-hosting environment using the candidate architecture. The team detailed all the require-
ments with the scenario, wrote the code, and created more than 70 unit tests. The code was exe-
cuted in the cloud (QA environment) with only one outstanding Severity 1 defect.

CMU/SEI-2018-SR-016 21
SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

During the second iteration, the final development team was chosen based on the skill sets needed
for the project, including those for team compatibility. The initial team was formed during the In-
ception Phase, with the collaborating organizations selecting the members. After team members
worked together during the early iterations, they determined that the team was too large, so only a
subset of the initial team moved forward into the next phases.

Tasks for the Elaboration Phase were selected in accordance with the architecture-centric, risk-
based approach of RUP. During this phase, the team accomplished the following:

• identified, prioritized, and validated architecturally significant and high-risk business require-
ments and use case scenarios. These included scalability, external interfaces, performance,
data conversion, and reuse of the LEGACY graphical user interface (GUI).

• performed design, coding, and testing to address the prioritized high-risk requirements and
scenarios. The team proved feasibility in the following areas:
− proved it was possible to integrate the LEGACY GUI with the new FedCLASS architec-

ture
− demonstrated that the system could perform primary operations concurrently and during

updates without locking issues (a problem in LEGACY)
− demonstrated that FedCLASS could process files under data-volume conditions that

matched reasonable near-future projections.
− made a significant breakthrough that resulted in the system responding much faster than

required for large files (51 minutes to process a 3-million-record file; the requirement was
180 minutes). The development team determined that multi-threaded processing for key
steps maximized the use of CPUs for parallel processing.

• began work on establishing an automated test infrastructure with a focus on performance and
scalability testing. As part of this work, the team successfully generated random, production-
like data for testing in the cloud-hosted environment to address security concerns about per-
sonally identifiable information (PII).

By the end of the Elaboration Phase, the team had demonstrated that the chosen architecture sup-
ported scalability requirements and met the stakeholders’ projected data volumes. The team also
integrated the LEGACY GUI with the FedCLASS architecture, which would allow the business
owner to reuse that GUI if necessary or desired.

5.2 Moving to Lean and Kanban

After the end of the Elaboration Phase and the completion of Release 1, a team meeting was held
at the testing contractor’s office to assess progress and plan the next release. At this point, the de-
velopment team had about eight months of experience working as dedicated team members from
four separate organizations, meeting daily in a virtual team room. While establishing a cross-func-
tional, self-directed team was the goal, the group had not yet reached that level of performance.
This meeting turned out to be a key event in the evolution of this team, because they decided to
switch to new coaches and a new coaching style.

The new coaching team brought with it a different coaching approach to coordinating develop-
ment and helped the team begin applying Lean thinking and Kanban techniques. The coaching

CMU/SEI-2018-SR-016 22
SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

style moved from a command-and-control, directive style to a style focused on encouraging new
behaviors and helping team members address roles and responsibilities in a new way. The team
also addressed topics related to release planning, determined the definition of done for develop-
ment, and defined requirements on the data center environment for the operational FedCLASS
software and architecture.

Other key changes included the following:
• moved from an emphasis on risk-centric, architecture-centric development to an emphasis on

delivering functionality with business value: The team eliminated formal risk tracking and
embraced an emergent approach to architecture.

• moved away from Pattern-Enabled Development: A degree of functionality was extracted
from the architectural framework.

• moved to a Kanban-style, continuous-flow model for development: The team maintained
fixed iterations of three weeks in length but primarily used them to provide a cadence for
demonstrations to the product owner. The team did not implement the Scrum practice of com-
mitting to a fixed set of user stories for a given iteration based on team velocity.

• discontinued planning poker and the use of story points for estimation

• moved from use cases for requirements specification to user stories and test scenarios with
Cucumber, a tool for running automated acceptance tests: The team emphasized requirements
that emerged from conversations and collaboration among the product owner, developers, and
testers. They also adopted an acceptance test–driven development (ATDD) approach.

• adopted pair programming and refactoring as developer practices

• implemented continuous build, integration, and test: The team implemented on-demand envi-
ronment configuration and deployment.

• generated automated metrics for code and design quality on a nightly basis
• shifted from story prioritization based on risk to prioritization based on business value

The Agile and Lean practices adopted by the development team are summarized in Table 1. The
practices come from Scrum, Kanban, and XP.

Table 1: Agile and Lean Practices Used by the Development Team

Scrum Practices Kanban Practices XP Practices

Product backlog
Standup meeting
Retrospectives

Visualize the work
Limit work in progress (WIP)
Manage flow
Evolutionary change
Improve collaboratively
Evolve experimentally
Standup focusing on stories rather
than individuals

ATDD
Pair programming
Refactoring
Continuous integration
Collective code ownership
Simple design
Sustainable pace
User stories
Collaborative work space
On-site customer

The development team continued to use the Lean and Kanban framework as its approach through-
out all subsequent releases and deployment to production.

CMU/SEI-2018-SR-016 23
SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

5.2.1 Release 2: Developing Core Functionality

Release 2 consisted of 11 iterations that ran from Kickoff + 10 months to Kickoff + 19 months.
The team focused on developing user functionality as defined in the user stories and writing the
corresponding Cucumber tests.

Figure 8 illustrates the iterations of Release 2 of FedCLASS and Release 2’s fit within the overall
project timeline.

Figure 8: Release 2: Core Functions

During Iteration 1 of Release 2, the team started building new functional scenarios. Functions
added during this iteration included validating data format, recording data receipt, status of re-
ceipt, and completion of schedule. In addition, the team restructured the Maven project configura-
tion to include separation between code for the GUI and code for FedCLASS. They also fixed
existing code with optimistic locking of transactions, a database technique for avoiding update
collisions resulting from simultaneous updates to the same data by two concurrent users.

With the move to Kanban, the team stopped using the iteration plan template. The 11 iterations in
Release 2 were moved to a standard three-week cycle with a Wednesday start and Tuesday end.
During Release 2, the team implemented an extensive set of user and technical stories. User sto-
ries covered both GUI and batch operations. Technical stories covered quality attributes (e.g., per-
formance testing), modifications to the application architecture (e.g., investigating Oracle
TimesTen), and development infrastructure improvements (e.g., beginning to use ATDD and the
Cucumber tool and establishing a development staging environment within the data center).

5.2.2 Release 3: Developing Additional Core Functionality

Release 3, shown in Figure 9, consisted of seven iterations that ran from Kickoff + 19 months to
Kickoff + 23 months. The development team continued developing functional requirements and
preparing for deployment and operation. The development team interfaced more with the deploy-
ment team and focused on the readiness of the data center’s operational and disaster-recovery en-
vironments. (Note that the iteration numbers continued to increment even though the release
shifted to Release 3.)

CMU/SEI-2018-SR-016 24
SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Figure 9: Release 3: Core Functions

During the first iteration of Release 3, Iteration 12, the team completed functionality for determin-
ing calculations of data sets and allowing users to add, view, and update data. The team also im-
plemented several configurability functionalities and refactored data reports. The last feature
completed during this iteration was functionality for capturing additional data for primary opera-
tions. Related to the environment build-out in the new consolidated data center (introduced in
Section 2.2 and discussed further in Section 5.3.2), in this iteration the team installed Nexus and
configured it to pull build artifacts from the Nexus Cloud server. This gave the team a mechanism
for moving approved builds from the cloud into the data center’s staging and other environments.
The team also installed a Chef server on the Nexus server so it had a central place to manage and
view the deployments to the various environments.

Release 3 iterations continued the standard three-week cycle with a Wednesday start and Tuesday
end. The team used Kanban tracking of work in progress during all seven iterations. Release 3 fo-
cused on user functionality stories, including both GUI and batch operations. In addition, the team
achieved a significant milestone in the build-out of the data center environment—the successful
deployment of FedCLASS in the development/staging environment.

5.2.3 Release 4: Addressing Non-Core Functionality

The concept of releases was employed more loosely in this phase because the development team
shifted its focus to the projected deployment (go-live and go-parallel) into the government data
center run by Department Omega. Some presentations and status material used the term Release 4
to represent the work associated with deployment into the data center.

Between Kickoff + 23 months and Kickoff + 30 months—the time period informally called Re-
lease 4—the team decided to reuse LEGACY functionality, rather than rewriting it for
FedCLASS. During this period, 11 iterations occurred that each lasted 3 weeks, as shown in Fig-
ure 10. The team implemented an extensive set of user and technical stories. User stories covered
both GUI and batch operations. Technical stories covered quality attributes (e.g., security), modi-
fications to the application architecture (e.g., install Oracle TimesTen), and development infra-
structure improvements (e.g., publish Cucumber scenarios using Relish).

CMU/SEI-2018-SR-016 25
SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Figure 10: Release 4: Non-Core Functions

Iteration 29 occurred at Kickoff + 30 months. The iteration review was held near the end of this
month and declared to be the last one. During the iteration review, the development team provided
an update on parallel processing and answered questions. The review gave the team a chance to
thank everyone for their support over the past few years.

5.3 Deployment

This section covers the activities to complete the move to hosting the FedCLASS production soft-
ware in the government data center. The move to deployment uncovered additional work and
complexity. The development team had to deal with this complexity as they began parallel work
paths and focused on operational deployment in the data center.

The release plan diagram (Figure 6) had caused miscommunication between the development
team and Department Omega’s leadership. When they adopted Agile and Lean practices, the team
moved away from using the release plan and milestones but did not formally replace them with
the team’s projections of completion dates. However, the leadership assumed that the dates on the
release diagram were a high-level delivery schedule. Based on this assumption, leadership ex-
pected the team to deliver FedCLASS by Kickoff + 22 months.

As a result of this expectation, the development team began to interface more actively with out-
side organizations, such as the production data center. However, the outside organizations did not
use Agile and Lean approaches. The concepts of user stories, daily standup team meetings, and
full dedication to the program were all foreign to the outside organizations. The development
team found the difference in work processes between Agile and Lean approaches and traditional
approaches very frustrating. For over two years, team members were dedicated to completing the
user stories needed to provide value to the business owner. The outside organizations had multiple
priorities, and the individuals in the outside organizations had multiple tasks and priorities—no
one was dedicated solely to the FedCLASS Project.

Because organizations outside the project followed a traditional approach to performing work, the
development team adjusted its processes to accommodate their expectations. The team started to
work along the parallel paths shown in Figure 11 to meet the go-live requirements and start of
production by a target date of Kickoff + 29 months.

CMU/SEI-2018-SR-016 26
SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Figure 11: Moving to Go-Live Deployment

Working on parallel paths meant that some subteams (subsets of the development team) continued
to work on functional user stories, while others focused on data center infrastructure. One sub-
team (supplemented by new team members) focused on writing programs that would convert the
LEGACY database contents into the FedCLASS database structure. Converting the LEGACY da-
tabase was a critical action during the go-live deployment. Another subteam focused on testing
the performance aspects of the functional application. Meeting the service-level agreement for
processing data files was a critical factor for the business owner.

In addition to these parallel activities, the business owner established an independent testing effort
involving members of the Program Alpha business operations staff. The business owner staff per-
formed user-oriented testing of FedCLASS, worked with the interfacing agencies, and educated
other operational staff about the FedCLASS functionality.

5.3.1 Experiences with Converting the Old Databases

Although the functional user stories in the backlog targeted for the Kickoff + 29 months deploy-
ment date continued to be addressed at a steady rate, converting the legacy data to the FedCLASS
format became a problem for the development team. The conversion programs ran too slowly.
The conversion subteam was unable to determine a process and software programs to convert and
validate the legacy data within the time allotted for the three-day go-live window at Kickoff + 29
months. This problem rapidly became the top focus of the business owner and project manage-
ment. The development team took a multipronged approach to reduce the conversion time:
• use TimesTen, an in-memory Oracle database product whose purpose was to double

FedCLASS performance

• have an independent small group of experienced Java developers, not involved with coding
the conversion, work in parallel with the regular conversion coders to review the code and ex-
periment with performance improvements

• get a higher performance server and move LEGACY to it for the conversion processing win-
dow

While some actions did help speed up the conversion, the team still had difficulty converting the
legacy DB2 database to the FedCLASS format within the required time frame. When the SEI’s

CMU/SEI-2018-SR-016 27
SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

engagement with Department Omega ended at Kickoff + 35 months, this problem remained un-
solved.

5.3.2 Integrating with the Data Center

During Release 2, the requirements for hosting FedCLASS were determined. The option of de-
ploying to operations in a cloud environment was shelved due to security concerns with pro-
cessing PII data outside the government-owned data center. Participation of the deployment team
in the development team’s daily standup session began sporadically at Kickoff + 14 months and
matured during the final development push to reach a go-live milestone. The deployment team’s
participation gradually became a way for the development team to synchronize its work with the
creation and stabilization of the data center infrastructure.

In Release 3, work included technical interchanges with the deployment team and provided in-
sight into the dependency of the FedCLASS Project on a fully functional data center. Although
the development team had been preparing to integrate FedCLASS into the larger IT ecosystem of
Department Omega, concerted efforts toward this integration did not begin until Release 4 at
Kickoff + 23 months. The deployment team’s organization also oversaw IT systems’ compliance
with security, configuration management, and deployment standards for Department Omega. The
development team began documenting its de facto configuration management plan, performing an
inventory on its security and other IT controls, and assisting the deployment team with building
the new production environment for FedCLASS.

As FedCLASS moved toward deployment, the Agile-based development team started working
more closely with the non-Agile deployment team developing infrastructure at the data center.
The deployment team at first continued to use the traditional processes that were the means of
daily operation at the data center. These processes used service request tickets to authorize and
track work. Without a service request, data center staff were not authorized to perform work.

One of the primary difficulties of working with the deployment team was the inability of deploy-
ment team personnel to adapt to the Agile practices used by the development team until later in
the deployment process. Specifically, the deployment team was unable to regularly attend standup
meetings, assist with the development of pertinent user stories, prioritize those user stories, or ex-
ecute tasks in terms of user stories. The data center staff, including the deployment team, were
still completing a project to consolidate the data centers, as mentioned in Section 2.2. Conse-
quently, the ability of this new consolidated organization to provide timely service to projects
such as FedCLASS was greatly diminished. These complications further jeopardized the chances
for FedCLASS to become the system of record at Kickoff + 29 months—the target date for going
operational.

The development team overcame these difficulties by adapting to the more traditional approach
and treating the data center integration as a separate project rather than an integrated aspect of its
own Agile and Lean development process. The development team continued with user stories for
identifying all work to be done. However, for the data center’s user stories, the team adjusted its
practices to translate them into the deployment team’s work tracking system as service requests.
The team established a Kanban work flow for work stories related to the data center and supple-
mented the user stories with special action lists and tracking for the service requests. In addition,

CMU/SEI-2018-SR-016 28
SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

they also created a more structured listing of necessary work, allowing the deployment team to
better understand the requirements.

The data center’s traditional approaches put an additional workload on the development team,
which had to be very specific about what it asked the data center staff to do. Also, data center staff
were organized around specific systems, applications, or services, and the FedCLASS user stories
tended to cross these boundaries. As a result, completing a data center user story resulted in many
handoffs from person to person, with each person closing out his or her action. This contrasted
with the development team’s processes, which did not perform handoffs and which considered a
user story closed only after it passed the associated tests.

To keep the communication open and the focus on completion of the data center, the leadership of
the data center’s Data Management Services met weekly from Kickoff + 26 months to Kickoff +
30 months. These routine touch-point meetings helped participants ensure effective communica-
tion and progress, identify barriers, and assign needed actions for follow-up.

Late in the project, Department Omega leadership added the requirement that the government data
center use new approaches to support the deployment of FedCLASS. Traditionally, the opera-
tional environment was established and maintained by manual and often labor-intensive pro-
cesses. The FedCLASS Project demonstrated the value and benefit of using Chef and
“cookbooks” to more automatically build the operational infrastructure. The deployment team
learned to use Chef and write “recipes” to build the data center environment. By Kickoff + 30
months, the deployment team had created Chef recipes for building the environments for produc-
tion and was working to implement recipes for the other environments: DevStaging, System Ac-
ceptance Test (SAT), and Simulation. The process for building an operational environment was
shortened from a few months to a few hours. Also, with Chef recipes, the work steps were both
repeatable (automated to a larger degree) and more auditable.

5.4 Estimating System Completion

At Kickoff + 24 months, concerns about the development team’s ability to deliver the new soft-
ware by the target date of Kickoff + 29 months became more acute. As stated earlier, some parts
of Department Omega viewed the release plan milestone of Kickoff + 22 months as the comple-
tion date for FedCLASS, although the development team moved away from using the release plan
and milestones following the end of Release 1.

After Release 1, the development team managed its estimation process informally. While an esti-
mating and progress spreadsheet was made available to the entire team, members did not make
active use of these estimates or the estimation process. They did include an estimated completion
date as part of status reporting to the standing Management Steering Committee. This practice
would cause problems later when the Steering Committee expected the development team to ad-
here closely to its estimates.

Department Omega leadership kept the development team focused on a go-live target of Kickoff
+ 29 months. With this focus, both the development team and the deployment team worked the
issues related to establishing the government data center. The two groups collaborated to enhance
the daily standup as a mechanism to support the work that each group accomplished. They ex-
panded the Kanban board to address user stories for the government data center, in addition to the

CMU/SEI-2018-SR-016 29
SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

normal work-management processes in the data center. The cross-flow of communication at the
daily standup helped resolve impediments to operational deployment of the FedCLASS solution.

5.5 Changing Definitions of Success

At project launch, the program definition of done was described as “fully tested code, deployed
and working in a production-like data center environment, with converted data and integrated
with existing interfacing systems.” To fully refine this definition, the business owner had to deter-
mine whether the team’s end goal for FedCLASS would be go-live or the system of record. Go-
live means that a system is running, performing real processing on real data. Two systems han-
dling the same data can be live at the same time, running in parallel. But only one system can be
the system of record—the authoritative data source for a given data element or piece of infor-
mation—for a type of data in a specific agency at a time.

At Kickoff + 24 months, the development team started creating a series of scenarios for going live
on the target date of Kickoff + 29 months, which was the expectation of Omega leadership. The
team also looked at alternative scenarios by which FedCLASS could be described as a successful
conversion from LEGACY. These scenarios ranged from a low threshold of having all coding fin-
ished, with the system presumably ready to deploy, to a high threshold of declaring FedCLASS to
be the system of record at Kickoff + 29 months. After the team presented these scenarios to the
business owner, Department Omega’s leadership firmly and unequivocally decided at Kickoff +
25 months that nothing short of declaring FedCLASS to be the system of record at Kickoff + 29
months could be categorized as success.

This was the development team’s first experience with a firm deadline for operational delivery.
Team members began a series of discussions and actions to better understand specifically what
they needed to complete to meet the business owner’s needs. They created a specific Go-Live
Checklist presentation to reach the Kickoff + 29 months target. The business owner and Depart-
ment Omega’s leadership reviewed and accepted these go-live criteria, and the development team
established incremental checkpoints for Kickoff + 27 months and Kickoff + 28 months to evaluate
the progress on completing work to confidently go live with FedCLASS and its infrastructure.

To gain confidence in the development team’s ability to estimate the completion of work, Depart-
ment Omega’s leadership commissioned external studies of the estimated completion date. The
team estimated that they could complete work on functional software requirements in time for the
Kickoff + 29 months target. However, when they included the work necessary to also have
FedCLASS operational in the government data center, that target was unrealistic. The external
studies of the estimated completion date also concluded that the target date was high risk.

The development team and the deployment team continued to work together collaboratively to
achieve the go-live target date of Kickoff + 29 months. As they accomplished the required work,
they realized that they could not achieve high confidence for a successful go-live transition to the
new FedCLASS software. During the checkpoint review at Kickoff + 28 months, Department
Omega’s leadership released the two groups from the go-live target date. However, attention and
focus remained on finishing the build-out of the government data center for deploying FedCLASS
by that date.

CMU/SEI-2018-SR-016 30
SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

5.6 Preparing for Deployment

The move to FedCLASS as the system of record did not occur at Kickoff + 29 months. The next
go-live window would not occur until after a seasonal period of heavy use of LEGACY ended, so
the old system continued to be the system of record during this time frame. Beginning at Kickoff
+ 30 months, the development team focused on getting FedCLASS to process matching files in
parallel with LEGACY. Work continued on all parallel paths (see Figure 11), but the priority was
to establish a stable operations environment for moving FedCLASS to production. To meet that
goal, the development team focused on establishing the Chef recipes that would rebuild the opera-
tional environment if a failure occurred. They also worked with the deployment team to ensure
that the backup and recovery policies would function correctly if needed.

During this time period, the development team continued to struggle with converting the legacy
DB2 database to the new FedCLASS database structure. Conversion was a “one-time” event, nec-
essary to complete the shift to FedCLASS; however, it could not be completed in the 20 hours al-
lotted for the go-live window. The business owner’s requirement was to halt production using
LEGACY and restart production using FedCLASS. The cutover had to occur over a three-day
weekend and be completed within the three-day weekend. The team continued to work on the
software applications to rapidly convert the DB2 database. They also started an additional path to
acquire a faster mainframe and larger amount of storage in an attempt to meet the conversion win-
dow.

While the development team worked on issues related to the database conversion, Program Al-
pha’s business operations staff both supported LEGACY operation for daily use and performed
user-oriented testing of FedCLASS. The operations staff also started performing end-to-end tests
of the interfacing systems. The need to support the end-to-end testing put additional workload on
the development team.

5.7 Automated Delivery Pipeline and Continuous Integration

FedCLASS development moved toward addressing changes in the application code and in the
computing infrastructure as part of an integrated system. The development team defined a process
and roles to get new and modified code into production using a continuous-integration approach.
This new approach required changes to the infrastructure to be addressed concurrently with the
code that the infrastructure supported. This meant recognizing the interdependence of code and
infrastructure, taking a unified approach to making changes, and performing integrated testing of
the code and infrastructure before deployment to production.

The release-management process defined by the development team began when either the deploy-
ment team or Department Omega identified a change. Types of changes included applying
patches, installing additional software, changing a parameter, and changing the code. Develop-
ment work always began in the Amazon Web Services (AWS) cloud environment. Changes made
by developers were checked into the formal version control system (Git) in AWS multiple times
per day. Upon every check-in or commit, the continuous-integration server created a build and as-
signed a build number in AWS.

The continuous-integration server in AWS ran the unit and acceptance tests and failed the build if
all tests did not pass. The continuous-integration server also ran quality and security scans using

CMU/SEI-2018-SR-016 31
SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Fortify and SonarJ and failed the build if the code violated security and quality thresholds estab-
lished by the deployment team. Once a build passed all automated tests, the development team up-
dated the build number in AWS Chef, and the change was propagated to the AWS deployment
environment. The team tested the deployment process to ensure that Chef recipes worked as ex-
pected.

In addition to being deployed to AWS, successful builds were also deployed to the data center’s
infrastructure. This allowed the deployment team to view the differences between the currently
deployed build and the new release. To deploy a new release, the team’s system administrator
simply updated the build number on the team Chef server for the FedCLASS Dev-Staging envi-
ronment, and the build underwent testing there. In addition to Dev-Staging, builds were also de-
ployed to and tested in the SAT environment and the Simulation environment.

The data center’s Service Operation Branch deployed and verified all releases to production. Re-
leases to production were deployed to both the production environment and the disaster-recovery
environment. In the development team’s release-management process, FedCLASS production de-
ployments were planned for twice per week, with the intention of gradually moving toward daily
deployments.

5.8 Sustainment

The initial FedCLASS deployment replicated the LEGACY functionality in the FedCLASS
architecture and infrastructure. Post-deployment, the development team’s focus shifted to
developing new functionality and features. FedCLASS was designed to be more flexible and to
enable additions and changes. As Program Alpha’s needs changed over time, this flexibility for
growth would support new functionality to increase sources of data, data volume, and data-match-
ing effectiveness.

Agreements between Department Omega and the development and testing contractors for support-
ing FedCLASS were incomplete at the time that we completed our study. But they expected the
same roles followed during the development phase to continue in the post-deployment phase. The
business owner and the business owner’s staff continued to plan the post-deployment work.

While this case study was being written, the development team was planning to move to a
DevOps strategy of small, frequent software releases. In this approach, the development team and
operations team work closely together to ensure the controlled and systematic release of new busi-
ness functionality on very short release cycles. The development team planned to use DevOps in
the future, but the operational data center had not yet approved this approach.

CMU/SEI-2018-SR-016 32
SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

6 Project Analysis

The history of the FedCLASS Project described in the preceding sections yields some helpful in-
sights on an early foray into Agile development in the federal government context. These insights
may benefit future Agile projects in the federal government and the software engineering commu-
nity as a whole. This section describes in detail the insights gleaned during the research of this
case study, particularly regarding Agile and Lean adoption, technical approaches, and leadership.

6.1 Analysis of Agile and Lean Adoption

During Release 1, the FedCLASS team implemented a RUP-based iterative approach supple-
mented by selected Agile practices from Scrum and XP. While this approach proved effective to a
degree, the team believed that the development culture and environment did not yet effectively
embrace the underlying values and principles of Agile, particularly with respect to the concept of
a self-organizing and self-managing team. This was the primary driving force behind the change
of coaches and development approach that occurred between Release 1 and Release 2.

Beginning with Release 2, the team focused on adopting Agile as a philosophy and culture. They
also embraced Lean and Kanban, while continuing to implement selected Agile practices from
Scrum and XP. Certain Agile practices in use during Release 1 were discontinued. Of particular
significance was the discontinuation of story point estimation and the concept of team commit-
ment to the completion of a set of stories for a given sprint.

The FedCLASS development team was successful both in embracing the Agile culture and princi-
ples and in implementing many key Agile practices, as described in the subsections below on
• requirements and test
• enhancing collaboration

• the contracting environment
However, as with any change initiative, some practices were candidates for improvement, as de-
scribed in the subsections below on
• estimation practices
• metrics and continuous improvement

6.1.1 Requirements and Test

The areas of requirements and test illustrate how the FedCLASS Project’s adoption of Agile prac-
tices was informed by the Agile mind-set. Agile calls for incremental delivery of customer-valued
functionality. The development team consistently delivered incremental releases of the system on
a three-week cadence. The prioritization and specification of the system was based on a close col-
laboration between the development team and the product owners. A three-person product owner
team was dedicated to the project and was available to the development team at all times via an
“always-on” video teleconference (VTC) connection. The product owners all had deep subject-
matter expertise and long-established relationships with the user community and other key stake-
holders.

CMU/SEI-2018-SR-016 33
SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

In keeping with Agile practices, the requirements were specified as user stories and pulled from
the backlog in accordance with product owner priorities. Agile practices regard user stories as
“placeholders for conversations” between developers and product owners. The development team
deeply embraced this concept. Every user story resulted in in-depth discussions between a product
owner and a developer. In most cases, a tester was also included in the conversations. This multi-
functional approach ensured comprehensive, in-depth analysis of stakeholder requirements. A fur-
ther practice innovation that the FedCLASS Project adopted was to produce executable
requirement specifications (tests) of the user stories. These scenarios were written by the product
owners and served as both requirements specifications and automated test scripts for execution by
the developers. Using executable scenarios to specify stories is a form of ATDD and advances the
Agile goal of “building quality in.”

Involving the developers in story analysis and scenario creation ensured that they wrote the code
for FedCLASS with an in-depth understanding of the system’s expected behavior and output. This
understanding is reflected in the success of the stakeholder demonstrations conducted at the end
of each iteration and in the limited number of defects that were fed back to the team for rework.

6.1.2 Enhancing Collaboration

Overall, the team displayed a strong sense of collaboration, trust, and mutual support as well as a
commitment to overcoming obstacles and delivering customer value. This was achieved even
though the team was broadly distributed across multiple locations. The tool environment used to
support the distributed team included an always-on VTC and instant-messaging chat rooms. VTC
and instant messaging provided different communication options depending on the subject matter
and the communication preferences of individual team members. Team members also had the op-
tion to intersperse work in an office location with work at home, which helped offset the difficul-
ties of distributing work across multiple time zones. The tool environment allowed flexibility that
supported work–life balance (related to the Agile goal of sustainability) while maintaining a con-
sistent and rigorous development focus.

More specifically, the collaborative approach to story specification was a major achievement for
the FedCLASS Project from both a practice perspective and a cultural perspective; collaboration
is one of the key cornerstones of any Agile method [Cockburn 2007, Highsmith 2004]. The organ-
izational boundaries that frequently appear in traditional projects between developers and product
owners were almost nonexistent in the project at the team level. Several team members cited col-
laboration as an aspect of Agile development that they greatly enjoyed and valued. Most stated
that they would be reluctant to work in any other way on future projects.

Another form of collaboration, the use of pair programming, also contributed to the goal of build-
ing quality in. Team members frequently cited pair programming as a practice that was challeng-
ing to adopt. However, after the initial period of learning and adjustment, it was well accepted by
the team. In addition to improved code quality, team members appreciated the fact that by facili-
tating collective code ownership, pair programming allowed more flexibility because it reduced
the likelihood of one person becoming a single point of failure for a given piece of code. Pro-
gramming pairs were rotated, which facilitated knowledge transfer within the team and strength-
ened team interactions.

CMU/SEI-2018-SR-016 34
SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

While collaboration and communication between the development team and product owners were
excellent, some communications gaps resulted in negative impacts to the project. In particular,
there was a misunderstanding between the team and executive leadership about release milestones
and a lack of clarity between the team and operations about the viability of using AWS as a pro-
duction environment. Both misunderstandings arose at a later stage in the project and resulted in
rework, delays, and considerable stress. As a result, the team learned that a focus on internal cohe-
sion and business stakeholders should not obscure the need for communication with other key or-
ganizational stakeholders.

6.1.3 The Contracting Environment

In addition to changing its development culture and practices, the FedCLASS Project focused on
transforming its contracting environment. This transformation manifested itself both in contract-
ing practices for obtaining external services and in Department Omega’s relationship with the de-
velopment and testing contractors.

Traditional approaches to contracting practices often present a barrier to Agile adoption. Depart-
ment Omega follows standard FAR, and the contracts for the FedCLASS Project were firm fixed-
price contracts for services. Agile development assumes the capacity to respond rapidly to
changes that may include the need to obtain initially unanticipated expertise, software, hardware,
training, manpower, and other products and services. For the project, the government contracting
officer supported the creation of flexible agreements designed to enable responsiveness to chang-
ing development needs. This empowered management to source technical expertise quickly to re-
solve infrastructure issues, obtain new tools, and acquire coaching and consulting resources. This
capability, coupled with tight feedback loops between management and the development team,
enabled management to remove impediments and assist the team in timely course correction.

The Agile Manifesto calls for valuing “customer collaboration over contract negotiation” [Mani-
festo 2001]. On previous Program Alpha projects, as Department Omega’s agents, the develop-
ment and testing contractors’ role was to provide solutions for software development. The
FedCLASS Project transformed the nature of the relationship between Department Omega and
these contractors. The department took a leadership role in the Agile adoption effort, bringing in
outside expertise and hiring external coaches. Department Omega leadership, project managers,
and product owners engaged directly with development resources on a daily basis rather than at
prescribed times within the software lifecycle.

6.1.4 Improving Estimation

After Release 1, the development team discontinued the use of team-based estimation practices,
which previously had been done in story points using planning poker. Instead, estimation was
done in story points by the coaches and was used primarily for status reporting to upper manage-
ment. Changing estimation practices disrupted communications about delivery projections be-
tween the team and upper management, which reduced upper management’s confidence in the
team’s ability to forecast.

As the development focus moved to operational deployment, senior leadership of Department
Omega expected projected milestone dates. Because team members were not comfortable with
their estimates, senior leadership tended to set dates, and those dates put the team under pressure.

CMU/SEI-2018-SR-016 35
SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Independent estimation reviews made by external experts helped to reset expectations for work
completion.

6.1.5 Metrics and Continuous Improvement

The project did not emphasize disciplined metrics collection and the display of “information radi-
ators,” a recommended Agile practice. Although the team generated automated metrics for code
and design quality on a nightly basis, we did not see evidence of metrics collection and analysis in
other areas. A rigorous data orientation can serve as a platform for continuous improvement,
which is central to Agile and Lean practices. While the development team conducted iteration ret-
rospectives, the concept of data-driven continuous improvement was not well integrated. Data re-
cording and monitoring were not part of the team’s day-to-day operations, and the team tended to
bypass retrospectives when confronted by delivery deadlines.

6.2 Analysis of Technical Approaches

The FedCLASS Project exposed the development team to a variety of new technologies and tech-
nical methods. The team adopted many of them successfully, as described in the subsections be-
low on
• cloud development
• automation of test, integration, and build processes

• layered architecture

• the use of open source frameworks
• data conversion
Although the development team successfully adopted and integrated a number of technologies,
gaps in project communication led to complications in technical implementation, as described in
the subsection on cloud development. In addition, not all of their development was without tech-
nical issues, as described in the subsection on data conversion.

6.2.1 Cloud Development

Early in the project, the development team chose to use publicly available cloud services during
development, hoping that Department Omega would also permit a production deployment to the
cloud. The development team chose a cloud approach because it sought the abilities to
• spin up and spin down virtual servers at will while paying only for services used
• tune virtual servers as desired and install software on those servers at will
This use of cloud services allowed the development team to begin development almost immedi-
ately, without the lag time associated with acquiring and building a development environment. It
also aligned Department Omega with the Federal CIO initiative to start moving the government
toward the use of cloud technology.

The circumstances, however, began to change when preparing to move FedCLASS to a produc-
tion environment. Department Omega neither had a cloud environment ready for production sys-
tems nor would it allow production systems to be deployed to public clouds. Consequently,
production was deployed on a traditional premise-based IT infrastructure. The development team,

CMU/SEI-2018-SR-016 36
SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

having become accustomed to the flexibility associated with cloud services, had difficulty reaccli-
mating themselves to this more traditional approach to provisioning and deploying IT infrastruc-
ture. The work necessary to complete the production data center took more time and was one of
the justifications for delaying deployment to production status for FedCLASS.

6.2.2 Automation

The development team chose to automate acceptance testing and the release delivery pipeline
(continuous integration). Using these automated practices allowed for short and frequent itera-
tions. For example, without the ability to perform automated tests, a non-automated, full-regres-
sion testing cycle could easily increase the length of an iteration. The automated tests were run on
multiple code bases each time a new check-in occurred.

The team succeeded in using tools to automate tasks. Tool selection was based mostly on recom-
mendations of the coaches. The selected tools included
• Subversion (later Git) for configuration management
• Jenkins, Hudson, and Bamboo servers for continuous integration

• Cucumber for automated acceptance testing

• Chef for automated deployments and computing hardware configuration management

• CAST, Fortify, and SonarJ to review code for adherence to project standards

6.2.3 Layered Architecture

One of the most established and widespread best practices in software architecture is to divide
software into layers with clean and clear boundaries. This is achieved by assigning each code unit
(e.g., a class) to one and only one layer that handles one category of job, such as business deci-
sions. Each layer remains agnostic about how other layers handle their jobs even as it interacts
with those layers to accomplish the overall goal of the use case it supports. FedCLASS employed
such a layered architecture.

The benefits of a layered architecture are as follows:
• Maintenance is improved because predictable patterns for fulfilling user stories are always

honored, which allows programmers to quickly find and update code units when modifying a
specific story.

• Testing is improved because specific types of functions, such as saving data to a database, are
isolated to specific code units and consequently can be tested in isolation.

• Interoperability and portability are improved because the functions associated with interac-
tions with another system, suite of libraries, or platform are isolated to one layer of code,
which can be replaced or rewritten to adapt to a new system, suite of libraries, or platform.

Because of this layering, FedCLASS exhibited a strong degree of portability, particularly between
JEE engines (e.g., WebLogic, WebSphere) and between relational databases. Additionally, the
system exhibited a strong degree of maintainability because user stories tended to follow similar
paths through the architecture.

CMU/SEI-2018-SR-016 37
SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

6.2.4 Open Source Frameworks

The development team used proven open source frameworks such as JEE, EclipseLink, Struts,
Spring, Cucumber, Git, Jira, and Chef. Open source software has the following benefits:
• Many developers have used, tested, and offered improvements to open source software.
• Open source software implements reusability, not only within a project but outside of it.

• Open source software brings the collective knowledge of the software engineering commu-
nity at large to a project.

• Use of open source software often reduces costs because many of these tools are free.

For example, using JEE relieved the development team of coding the detailed mechanisms of
transmitting data from one server to another over TCP/IP or HTTP. Those mechanisms were
available to them as Java code that was already familiar to many of the team members and was so
well tested that its correctness could be trusted and did not require specific testing.

6.2.5 Data Conversion

One of the most challenging areas for the development team was converting its legacy data into
the format required for the new system. The challenge was not in relating the legacy data model to
the new data model but rather in extracting, transforming, and loading the data in the span of
downtime allotted for the conversion. Conversion, for the purposes of fully migrating from one
system to another, is different from standard development:
• Conversion code is meant to be used only once, requiring less focus on maintainability or

other best practices. The overriding considerations are correctness and performance.

• Coders for conversions do not usually need to understand the functioning of the primary sys-
tem well. They are essentially converting data from one format to another.

In hindsight, to better address the performance issues discovered in the conversion programs for
converting the legacy DB2 data, the team could have begun work on the conversion earlier—theo-
retically as soon as the new data model was nearly finalized. Additionally, the team could have
dedicated a small team to conversion that was integrated with deployment efforts rather than de-
velopment efforts.

6.3 Analysis of Leadership

Department Omega leadership on the FedCLASS Project exhibited best practices in project man-
agement [NIST 2013] by
• setting the team’s vision and direction, such as choosing Agile methods for the development

approach

• communicating with the workforce, such as engaging in daily standups with the entire team

• creating an environment and culture for high performance, such as allowing for continuous
improvement, discarding practices that did not work, and adopting those that did

Section 6.3.1 describes how Department Omega leadership exhibited these best practices through
managing cultural changes. Sections 6.3.2 and 6.3.3 describe improvements that the leadership
team could have made in the areas of Agile interface and risk management.

CMU/SEI-2018-SR-016 38
SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

6.3.1 Cultural Change

The FedCLASS Project leadership faced the challenge of managing the cultural and process ad-
justments necessary for the players to move from traditional, hierarchical management techniques
to being a self-directed team. As noted earlier, Agile processes were well adopted by the project
leadership. The development and testing contractors eventually adjusted well to the Agile prac-
tices through their participation in the FedCLASS development and were mostly receptive to Ag-
ile and eager to experiment with new techniques and approaches.

To promote the benefits of Agile practices, the project leadership adopted a successful team-em-
powering style by supplying the development team with the tools and resources necessary to
achieve progress and removing obstacles that would hinder the team’s progress. Ultimately, or-
ganizational leaders are responsible for guiding an organization to produce the results associated
with its goals, and project leadership fulfilled this responsibility by implementing innovations, ini-
tiating improvements, and guiding the program toward its strategic objective of delivering the
FedCLASS system.

6.3.2 The Agile Interface

During the development of FedCLASS, some discord arose around the “Agile interface.” That is,
the Agile methods sometimes conflicted with the traditional governance processes surrounding
them. Some of the traditional governance processes that the project interfaced with were
• Department Omega IT policies, such as security and configuration management for the opera-

tional data center environment

• Department Omega Technical Architecture Review Board

• the development contractor for supporting the LEGACY implementation

Conflicts around the Agile interface mostly manifested as communication breakdowns, particu-
larly a lack of proactive communication between the project leadership and the Department
Omega configuration management and operational data center personnel as well as back-channel
communications with the development contractor.

The project leadership successfully addressed many of these communication breakdowns by in-
sisting on defined and regular meetings with project stakeholders and by engaging coaches to
mentor stakeholders outside of the core development team. However, a major communication gap
persisted between the team and the Management Steering Committee regarding the release plan,
team estimates, and the projected go-live date.

6.3.3 Risk Management

The most common risk associated with software development—inadequate delivery of product—
is mitigated by Agile practices through short iterations and frequent deliveries [Cohn 2010]. How-
ever, risks can be associated with all aspects of a software development project—including hard-
ware, requirements, and more—not just the software per se.

The development team dealt with risks through informal discussion and strategy sessions and did
not develop or institute a formalized Risk Management Plan. As a result, the team tended to ana-
lyze the program and enterprise-level risks that manifested during the development of FedCLASS

CMU/SEI-2018-SR-016 39
SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

in an ad hoc manner as they arose, rather than anticipating and planning for them using a system-
atic and documented process. As a result, leadership needed to develop mitigations quickly for
highly anticipatable risks, such as the manifested risk that FedCLASS could not be deployed in a
cloud and would require a dedicated hardware infrastructure internal to Department Omega. De-
veloping this hardware infrastructure in cooperation with Department Omega production person-
nel proved to be one of the most difficult tasks for the development team and would have
benefited from a longer, more deliberative planning process. While informal means may be suffi-
cient to mitigate risk at the level of the software development team in an Agile context, a greater
degree of formality is usually prudent when scaling to the enterprise.

CMU/SEI-2018-SR-016 40
SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

7 Summary

Department Omega chose to follow an uncharted path to creating the FedCLASS capability. After
years of experience with traditional and incremental changes in LEGACY, the department’s lead-
ership was willing to take a risk and pilot innovative methods and technology. The primary goal
that drove the reengineering of LEGACY toward a completely new solution was to make a funda-
mental break with the 15-year strategy of evolutionary, incremental change to the existing plat-
form. Program Alpha needed a software platform for future growth. LEGACY needed the
capability and capacity to grow and support expanded users of the system, as outlined in Depart-
ment Omega’s strategic planning goals. The broader 2010 federal IT reform environment sup-
ported taking a risk on innovative development and change. As part of its “take a chance”
strategy, Department Omega’s leadership charted a greenfield approach to innovation and change.

Figure 1 shows the broad areas of innovation and change that are briefly summarized below:
• a new management role: The business owner had extensive experience with LEGACY and

was willing to take a role with direct responsibility for achieving the primary business goal.
As a result, a unique relationship was established between Department Omega and managers
from the development and testing contractors. Department Omega leadership was responsible
for the development team’s day-to-day work, and the business owner was directly involved
with the user stories. Also, external coaches were introduced into the project with the goal of
rapidly providing new knowledge for team members. The new technologies and methodolo-
gies were not part of the existing skills of Department Omega staff.

• new technology: Cloud-based development, a new programming language, new commercial
products, and new development environments and tools were introduced as part of building a
foundation for future growth.

• a new development team concept: The department embraced new Agile and Lean develop-
ment team concepts, such as having dedicated team members who were self-organized and
operating in a virtual team room.

• a new software methodology: The development team experimented with software methodolo-
gies including RUP, Agile, Lean, Scrum, and Kanban. They also experimented with integrat-
ing practices from different methodologies such as daily standups, Kanban boards, story point
estimation, user stories, pair programming, and continuous integration. Throughout the exper-
imentation, the team remained focused on Agile and Lean flexibility in support of business
owner needs and value delivered.

The pilot program did not remain simply a pilot of Agile and Lean methods. What started as an
innovative pilot of new technology and approaches became a broad new transformational devel-
opment effort that effected changes across the organization. Some critical and key enabling fac-
tors for the project included
• a business owner who had professional IT skills and operational experience in the business

area

• a program manager who had experience with new technology

• an environment of government-wide IT reform and a push toward new technology

CMU/SEI-2018-SR-016 41
SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

• a senior leader who was willing to try something different
Many factors and influences came together at the start of the FedCLASS Project that helped it
succeed. They supported and reinforced each other, making it possible for the project to become a
model for change and opportunity for learning within the organization.

CMU/SEI-2018-SR-016 42
SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Appendix A Project Stakeholders

Program Alpha focused on providing services to the federal and state agencies. With a very broad
customer base, Program Alpha had a large number of data partners who depended on its services.
At the start of the FedCLASS Project, 18 key project stakeholders were identified. These key
stakeholders and their application interfaces were the same as those for LEGACY.

A goal of the project was to retain the existing application interfaces and limit the impact on the
external data partners. Interfaces were kept unchanged to limit the complexity of managing inter-
faces with external agencies. The existing Program Alpha stakeholder communities participated in
the transition from the legacy infrastructure to the FedCLASS system. The identified stakeholder
listing is categorized below into broad areas of concern and influence.

Project Oversight

The Sponsor (Department Omega, Assistant Commissioner), who would ultimately accept or re-
ject FedCLASS as the system of record.

The Senior Project Manager (Department Omega Projects Branch), who supported the project
manager for FedCLASS development, provided the interface with Governance Oversight, and
oversaw contractor support through the Contracting Officer Technical Representatives.

The FedCLASS Project Manager, who had responsibility for development work.

Product Owner

Program Alpha Director (Primary Business Owner) ran Program Alpha to perform a vital
function of the U.S. federal government for federal and state agencies. The director marketed the
Program Alpha system to expand its use among these agencies and train users on Program Alpha
software. The director set the business needs that determined what the FedCLASS system should
do and accepted or rejected the incremental deliveries of demonstrated capabilities. The director
then made a recommendation to the Sponsor to accept FedCLASS as the system of record for
LEGACY. The director also established Program Alpha Business Owner Delegates to act on
behalf of and with the authority of the primary business owner as integral members of the devel-
opment team.

Governance

Governance for the FedCLASS development effort was relatively complex because of the exten-
sive list of stakeholders. The governance covered Department Omega, the Sponsor’s direct over-
sight of FedCLASS development, and governance on how FedCLASS fit within the larger federal
IT enterprise and information security controls. These controls included the IT Governance
Board, Information Systems Security Officer Certification and Accreditation process, Enterprise
Architect, and CIO Configuration Management, Operations, and Policies.

The legal and regulatory governance covered how Program Alpha software and program opera-
tions met the legal and regulatory requirements for handling PII. These legal requirements flowed

CMU/SEI-2018-SR-016 43
SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

into the design and testing of FedCLASS. Because the development and testing contractors were
involved in development and support of both LEGACY and FedCLASS, the contractors’ auditors
helped enforce compliance with controls.

Development Team

The Department Omega Projects Branch had a project manager role for FedCLASS develop-
ment and provided the interface between the Governance Oversight and the FedCLASS Project.

The Program Alpha Business Owner Delegate had the Product Owner role on the development
team.

A development contractor handled software development, systems architecture, the database,
and maintenance of LEGACY.

A testing contractor handled client stress/load testing and LoadRunner.

A coaching contractor provided coaching and new technology subject-matter experts on the soft-
ware development team.

The FedCLASS Project maintenance team will consist of members from the same organiza-
tions that participated in development of FedCLASS.

Interfacing Systems

Interfacing systems are external users and systems that pass information to or receive information
from the Program Alpha system. The FedCLASS Project needed to address requirements of 13
interfacing systems during development and integration of the new system.

Operational Data Center

Department Omega’s Information and Security Services provided the infrastructure for hosting
the FedCLASS applications. It also hosted and supported the LEGACY system being replaced by
FedCLASS.

Platform Engineering: engineering for Unix, Middleware (web, application, database), Main-
frame z/OS, Mainframe z/Linux, Storage (Mainframe and AIX), Single Sign-On (SiteMinder),
Disaster Recovery (Unix and Mainframe), Intel (Windows), and Citrix

Network Engineering/Operations

Platform Operations

Configuration Management: operations for Unix, Mainframe, Service Desk, and Desktop/LAN
support

Applications Server: WebSphere application server and WebFocus reports for Program Alpha
web client

Database Administration: current Program Alpha DB2 database administrator

CMU/SEI-2018-SR-016 44
SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Disaster Recovery: for Distributed Systems IBM P-Series using Global Mirroring

IBM Tivoli Identity Manager (ITIM)\DACD: provision of user accounts and passwords

Middleware: operational and engineering support for Middleware software (Oracle, DB2, Web-
Sphere, MQ, SiteMinder, WebFocus, Wily)

Monitoring: performance monitoring, system status, and alerts using CA Wily and CA Unicenter

Scheduler: automation of batch job scheduling on the mainframe and distributed platforms

Single Sign-On (SSO)/SiteMinder: how users currently sign on to the web client through
SiteMinder. The team assists developers with implementing SSO within the Program Alpha client
using SiteMinder.

Storage: allocation of data

Virtualization: engineering virtual hardware and operating systems for IBM P-Series and AIX
platforms

Operational Support

Operational support included all those who supported the daily operation of Program Alpha.

Program Alpha Operations: system support and use

Program Alpha User Acceptance Testing Team: system supports, user acceptance, and end-to-
end testing to verify new users

CMU/SEI-2018-SR-016 45
SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Appendix B Project Timeline

CMU/SEI-2018-SR-016 46
SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Appendix C Development Tools

Throughout this case study, we cited many tools used by the development team. This appendix
lists those tools with their typical uses.

Table 2: Development Tools Used in the FedCLASS Project

Tool Use

Amazon Web
Services
(AWS)

Commercial, proprietary IT services. Cloud-based infrastructure as a service (IaaS) and soft-
ware as a service (SaaS). Provides application programming interfaces (APIs) for mature,
widely used web services; open standards that can be used to provide or integrate AWS, third-
party, or custom-developed storage; and computing, networking, and other infrastructure ser-
vices into customer applications. Used for development and testing.
http://aws.amazon.com

Bamboo Automates tasks for continuous integration

CAST
(static analysis
tool)

Structural quality measurement
Maintenance cost model
Estimation of technical debt
Run weekly to check total code set

Chef A systems integration framework, with both open source and proprietary versions, built to bring
the benefits of configuration management to the entire infrastructure. Key enabler for continu-
ous integration, in which modified source code is recompiled, retested, and verified upon
check-in.
Automates configuration, integration, and deployment of software. Insulates developers from
the specific details of the target hardware or operating platform, allowing them to focus more
attention on the application code. Provides “automated infrastructure” by allowing developers
to write software modules that describe the target operating hardware and software platform
and how it should be deployed, configured, and managed.
http://www.opscode.com/chef/#how-works

Connect:Direct Transfers files between mainframe computers and midrange computers

Cucumber Non-commercial open source product for running automated acceptance tests. Allows software
development teams to capture requirements in simple plain-text, human-readable scripts that
can be compiled and tested. The scripts describe the software’s intended behavior and be-
come a primary source for documentation, automated tests, and specs for developers.
http://www.cukes.info/

DB2 A relational database management system from IBM for storing, analyzing, and retrieving data
efficiently

Eclipse A free Java development environment
http://www.eclipse.org/

EclipseLink An extensible framework that allows Java developers to interact with various data services, in-
cluding databases, web services, and enterprise information systems
http://www.eclipse.org/eclipselink

Fortify Tool
Suite

Security testing of software under development
Run weekly to check for security issues
Includes the HP Fortify Static Code Analyzer, a static analysis tool for source code. Scans
source code for patterns and indicators of security vulnerabilities and malicious software. Helps
reduce security risks by identifying vulnerabilities early in the development lifecycle. Used to
improve the security of developed software.
http://www8.hp.com/us/en/software-solutions/software.html?compURI=1338812

http://aws.amazon.com
http://www.opscode.com/chef/#how-works
http://www.cukes.info/
http://www.eclipse.org/
http://www.eclipse.org/eclipselink
http://www.eclipse.org/eclipselink

CMU/SEI-2018-SR-016 47
SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Tool Use

Git Source code management, configuration management

Jenkins and
Hudson

Jenkins and Hudson are both continuous-integration servers. They watch for changes in the
source control. When they see a change, they check out the changes, build the software, and
run all the tests. If there are failures, they notify the team by sending emails, updating a
webpage, and turning on a red lava lamp. The goal is to minimize the time between a check-in
that accidentally breaks something and the time it is discovered and fixed.

Jira Commercial product for project management and defect and issue tracking
http://www.atlassian.com/software/jira

Maven Non-commercial, open source software project management tool that can manage a project's
build, reporting, and documentation from a central source of information. Allows developers to
set up automated, repeatable scripts to “build” (compile) source code into executables. Helps
automate reporting and documentation of source code configurations.
http://maven.apache.org/maven-features.html

Nexus The development team’s artifact repository. When team members needed to have the Oracle
jar available for their build, they put it in Nexus. When they needed to add the Spring jar to the
build, it went in Nexus. By centrally managing all the artifacts, developers need not spend time
downloading them manually (Maven does this for them), and the source code repository stays
small because it is just the source code—not all the .jar files of the libraries and frameworks
being used.
Nexus is also used to transfer code and other files into the operations center. Its Nexus server
is set up to mirror the development team’s AWS server.
The development team recently purchased the professional version of Nexus and is getting it
installed and configured. It will allow them to analyze the open source libraries used for security
and licensing issues.

Nexus Cloud
servers:
• primary

server
• satellite

server
• cloud

A mechanism to move approved builds from the cloud into the staging and other environments.
The team also installed a Chef server on the Nexus server, providing a central place to man-
age and view the deployments to the various environments.

Oracle
TimesTen In-
Memory Data-
base

A relational database that runs in the application tier, storing all data in the main memory and
thus dramatically reducing latency and increasing throughput
https://www.oracle.com

Relish A tool that displays testing scripts in formatted output for understanding

SonarJ A static analysis tool for testing open source software code. Checks source code quality. Run
daily on every check-in of code.

Struts A free, open-source framework, developed by Apache, for creating Java web applications
https://struts.apache.org

Spring A tool that provides support to increase developer productivity in Java when using Apache
Cassandra
https://spring.io

Subversion Non-commercial open source product for software version control. Used to track, control, and
manage software changes.
http://subversion.apache.org/

http://www.atlassian.com/software/jira
http://maven.apache.org/maven-features.html
https://www.oracle.com
https://struts.apache.org
https://spring.io

CMU/SEI-2018-SR-016 48
SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Appendix D Training for the Agile Development Team

Training for the development team was provided incrementally during the early phases of the
FedCLASS Project, as part of starting up the dedicated team. The team was trained by the coaches
in the general topics as shown in Table 3. Most training was done as part of the normal flow of
work by the team. Limited formal external training was for Scrum master training.

Table 3: Identified Training Events for the FedCLASS Project

Training Event Focus of Training

Agile Project Phases Training on Agile project phases, iterations, and understanding the development
problem

Use-Case Modeling During use-case modeling training, the development team modeled use cases (dia-
grams and outlines).

Software Architecture
Principles

Completed an architectural concerns survey for the FedCLASS system.
Identified the requirements that are architecturally significant and defined candidate
architecture for the FedCLASS system.

Estimating Techniques Estimating the FedCLASS Project size. Included
• planning poker
• domain analysis
• techniques for estimating use case points
• analogy

Introduction to Pattern-
Enabled Development

Introduced the concepts of using proven patterns to guide the development.
http://patternenabled.com/

Cross-Trained Each
Other

Adopted three different technologies and processes, including
• AWS (cloud)
• Maven build and deployment technology
• new multi-threaded capabilities of Program Alpha application

Acceptance Test–Driven
Development

Training using a test-focused development approach

Kanban and Lean Sys-
tems Thinking

Training on use of the Jira Tool and Kanban methods applied to software develop-
ment projects

Cucumber Tool Training on use of the tool, skills, and knowledge needed to write the features to be
developed and tested

Git Tool Training Git-focused training was done as Lunch-and-Learn Sessions, to help the team move
to the new tool. Also, topic-specific training was provided when needed.
http://docs.opscode.com/

Chef Training Formal Chef training was provided for the integration. Chef is a tool and approach to
automating the configuration of the infrastructure.

http://patternenabled.com/
http://docs.opscode.com/

CMU/SEI-2018-SR-016 49
SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Appendix E Acronyms and Glossary

Term or Acronym Definition

Agile “A set of methods and practices based on the values and principles expressed in the Agile
Manifesto. Solutions evolve through collaboration between self-organizing, cross-func-
tional teams utilizing the appropriate practices for their context.”
https://www.agilealliance.org/agile101

API Application programming interface

ATDD Acceptance Test–Driven Development
http://www.acceptancetestdrivendevelopment.org/

AWS Amazon Web Services
http://aws.amazon.com/

business owner The person with the role of defining what is important to the business

CIO Chief information officer

coaching contractor A teaming relationship between the two named companies to support the FedCLASS Pro-
ject

COBOL COmmon Business-Oriented Language

construction In RUP, the construction phase involves designing, writing, testing, and completing the
product.
https://techterms.com/definition/rup

definition of done A list of criteria that must be met before a product increment or user story is considered
complete. In Agile practice, the development team defines this criteria.
https://www.agilealliance.org/glossary/definition-of-done

DevOps Continuous small software releases, with development and operations teams working to-
gether to ensure controlled, systematic releases of new business functionality on very
short release cycles
http://theagileadmin.com/what-is-devops/

Extreme Program-
ming

A software development methodology that is intended to improve software quality and re-
sponsiveness to changing customer requirements
http://www.extremeprogramming.org/rules.html

fail fast Failing immediately and visibly; used in the context of trying something new and learning
what works by doing
http://martinfowler.com/ieeeSoftware/failFast.pdf

FAR Federal Acquisition Regulation

FedCLASS Program Alpha software, a major reengineering of LEGACY

go-live The time when a system becomes available for use. Code moves from the test environ-
ment to the production environment, and the system becomes operational.

greenfield approach Starting with a clean sheet of paper, without any constraints imposed by prior work
http://www.webopedia.com/TERM/G/greenfield.html

GUI Graphical user interface

HTTP Hypertext Transfer Protocol

inception In RUP, the Inception Phase involves articulating the concept of a project; determining if it
is worth doing; and, if so, what resources are required.
https://techterms.com/definition/rup

https://www.agilealliance.org/agile101
http://www.acceptancetestdrivendevelopment.org/
http://aws.amazon.com/
https://techterms.com/definition/rup
https://www.agilealliance.org/glossary/definition-of-done
http://theagileadmin.com/what-is-devops/
http://www.extremeprogramming.org/rules.html
http://martinfowler.com/ieeeSoftware/failFast.pdf
http://www.webopedia.com/TERM/G/greenfield.html
http://www.webopedia.com/TERM/G/greenfield.html

CMU/SEI-2018-SR-016 50
SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Term or Acronym Definition

incremental
development

A method of software development modeled on a gradual increase in feature additions
and a cyclical release and upgrade pattern
https://www.techopedia.com/definition/25895/iterative-and-incremental-development

information radiator “A large, highly visible display used by software development teams to track progress.”
[Atlassian 2014]

IT Information technology

iteration A set of activities with a plan and evaluation criteria that results in a release. Each iteration
is a complete development cycle, from requirements gathering to implementation and test-
ing.
https://www.agilealliance.org/glossary/iteration/

JEE Java Platform, Enterprise Edition

Kanban A method for managing knowledge work with an emphasis on just-in-time delivery, while
not overloading the team members
http://en.wikipedia.org/wiki/Kanban_(development)

Lean The core idea is to maximize customer value while minimizing waste. Simply, Lean means
creating more value for customers with fewer resources.
http://www.lean.org/WhatsLean/

phase The span of time between two major milestones of the development process. In each
phase, defined objectives are met and artifacts are completed.

PII Personally identifiable information

pair programming A practice in Extreme Programming in which two programmers team up and assume joint
responsibility for a set of source code in order to deliver higher quality software than if
each programmer were to assume individual responsibility for some subset of that code
https://www.agilealliance.org/glossary/pairing/

Pattern-Enabled
Development

A set of eight principles targeted specifically for Java/JavaScript application development
with a pattern language
http://pedcentral.com

planning poker A free online Scrum tool that enables sprint planning through a consensus-based, gami-
fied technique for estimating effort or relative size of development goals in software devel-
opment
https://www.planningpoker.com

product backlog A prioritized features list, containing short descriptions of all functionality desired in the
product. When applying Scrum, it’s not necessary to start a project with a lengthy, up-front
effort to document all requirements. Typically, a Scrum team and its product owner begin
by writing down everything they can think of for Agile backlog prioritization. This Agile
product backlog is almost always more than enough for a first sprint. The Scrum product
backlog is then allowed to grow and change as more is learned about the product and its
customers.
http://www.mountaingoatsoftware.com/agile/scrum/product-backlog

https://www.techopedia.com/definition/25895/iterative-and-incremental-development
https://www.agilealliance.org/glossary/iteration/
http://en.wikipedia.org/wiki/Kanban_
http://www.lean.org/WhatsLean/
https://www.agilealliance.org/glossary/pairing/
http://pedcentral.com
https://www.planningpoker.com

CMU/SEI-2018-SR-016 51
SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Term or Acronym Definition

product owner Has responsibility for deciding what work will be done, the single individual who is respon-
sible for bringing forward the most valuable product possible by the desired date. The
product owner does this by managing the flow of work to the team and selecting and refin-
ing items from the product backlog. The product owner maintains the product backlog and
ensures that everyone knows what is on it and what the priorities are. The product owner
may be supported by other individuals but must be a single person. Certainly the product
owner is not solely responsible for everything.
The product owner provides the requirements for the product; it is a specific role in the
Scrum management process framework.
For FedCLASS development, the Director of Program Alpha, as the business owner,
served as the product owner.
http://www.scrumalliance.org/why-scrum/core-scrum-values-roles

Program Alpha A centralized program administered by Department Omega to perform a vital function of
the U.S. federal government for federal and state agencies

RAD Rapid application development, a development approach that emphasizes process over
planning. A RAD development team adjusts requirements as it gains knowledge about us-
ers’ needs.
http://en.wikipedia.org/wiki/Rapid_application_development

recipe In Chef, a recipe is the most fundamental configuration element within the organization.
Authored in the programming language Ruby, a recipe is a collection of resources that de-
fines everything required to configure part of a system. Recipes are stored in the project
“cookbook.”
https://docs.chef.io/recipes.html

refactoring A disciplined technique for improving the design of an existing code base, altering its inter-
nal structure without changing its external behavior
https://www.agilealliance.org/glossary/refactoring/

release A term used to group tasks that deliver some business capability. A release is the delivery
of a complete set of artifacts to a user.
https://www.agilealliance.org/glossary/frequent-release/

RUP Rational Unified Process
https://techterms.com/definition/rup

SAT System acceptance test

Scrum A management process framework defined by the Scrum Alliance
http://www.scrumalliance.org/

SEI Software Engineering Institute

service request A service request, part of the standard process for requesting and managing the work
within the data center

standups A specific meeting within the Scrum management framework. Team members report to
each other their work progress and blockers.
http://www.scrum-institute.org/Daily_Scrum_Meeting.php

system of record An information storage system that is the authoritative data source for a given data ele-
ment or piece of information
[Inmon 2008]

TCP/IP Transmission Control Protocol/Internet Protocol

TDD Test-driven development

UI User interface

http://www.scrumalliance.org/why-scrum/core-scrum-values-roles
http://en.wikipedia.org/wiki/Rapid_application_development
https://docs.chef.io/recipes.html
https://www.agilealliance.org/glossary/refactoring/
https://www.agilealliance.org/glossary/frequent-release/
https://techterms.com/definition/rup
http://www.scrumalliance.org/
http://www.scrum-institute.org/Daily_Scrum_Meeting.php

CMU/SEI-2018-SR-016 52
SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Term or Acronym Definition

use case A way to “describe the system’s behavior under various conditions as it responds to a re-
quest from one of the stakeholders, called the primary actor”
[Cockburn 2000]

user story User-visible functionality that can be developed within one iteration
https://www.agilealliance.org/glossary/user-stories/

velocity The amount of work done in a sprint
https://www.agilealliance.org/glossary/velocity/

WIP Work in progress, a Lean manufacturing concept of measuring work flow through the pro-
cess
http://en.wikipedia.org/wiki/Work_in_process

XP Extreme Programming, an Agile process that stresses customer satisfaction, focusing on
early testing, frequent incremental delivery, and responsiveness to changing customer re-
quirements.
http://www.extremeprogramming.org/

https://www.agilealliance.org/glossary/user-stories/
https://www.agilealliance.org/glossary/velocity/
http://en.wikipedia.org/wiki/Work_in_process

CMU/SEI-2018-SR-016 53
SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Appendix F Key Project Documents

Analysis of Alternatives: Cost and Schedule Analysis. Internal presentation. Kickoff + 12 months.

ARB Presentation Program Alpha Enterprise Architecture. Internal presentation. Kickoff – 12
months.

Business Case for the New Program Alpha System. Internal Report. Kickoff + 12 months.

Department Omega Data Center Consolidation Plan. Update. Kickoff + 2 months.

Department Omega Program Alpha FedCLASS Project Proposal. Internal presentation. Kickoff +
12 months.

Development contractor. Top Application Roadmap. Internal presentation. Kickoff year.

Enterprise Governance Portfolio and Project Management. Internal Presentation. Kickoff + 24
months.

Improving [Data Processing] at Department Omega. Internal presentation. Kickoff year.

Program Alpha Cost Assessment and Benchmark. Internal report. Kickoff – 12 months.

Program Alpha: Next Generation. Internal presentation. Kickoff + 12 months.

Program Alpha Production Platform Approval. Internal Presentation. Kickoff + 12 months.

Program Alpha FedCLASS Project into Agile. Internal presentation. Kickoff + 24 months.

Program Alpha System Requirements – Final. Internal report. Kickoff – 24 months.

FedCLASS Project. Internal memorandum. Kickoff year.

FedCLASS Project Status Reports. Internal status reports. Kickoff + 24 months.

Technology research firm. Program Alpha Architecture Review – Case Study. Internal Report.
Kickoff – 24 months.

Three-Year Business and Financial Plan. Internal report. Kickoff – 48 months.

CMU/SEI-2018-SR-016 54
SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

References

URLs are valid as of the publication date of this document.

[Atlassian 2014]
Information Radiators. Atlassian. 2014. https://confluence.atlassian.com/jira064/displaying-a-
dashboard-as-a-wallboard-720416968.html

[Baker 2014]
Baker, David. Has Scrum Killed the Business Analyst? Scrum Alliance. September 2014.
https://www.scrumalliance.org/community/articles/2014/september/has-scrum-killed-the-busi-
ness-analyst

[Cockburn 2000]
Cockburn, Alistair. Writing Effective Use Cases. Pearson Education. 2000.

[Cockburn 2007]
Cockburn, Alistair. Agile Software Development: The Cooperative Game (Second Edition). Addi-
son-Wesley. 2007.

[Cohn 2010]
Cohn, Mike. Managing Risk on Agile Projects with the Risk Burndown Chart. Mountaingoat
Software. 2010. https://www.mountaingoatsoftware.com/blog/managing-risk-on-agile-projects-
with-the-risk-burndown-chart

[GAO 2008]
Agencies Need to Establish Comprehensive Policies to Address Changes to Projects’ Cost, Sched-
ule, and Performance Goals. GAO Report GAO-08-925. Government Accountability Office. July
31, 2008.

[Highsmith 2004]
Highsmith, Jim. Agile Project Management. Pearson Education. 2004.

[Inmon 2008]
Inmon, W. H.; Strauss, D.; & Neuschloss, G. DW 2.0: The Architecture for the Next Generation
of Data Warehousing. Elsevier. 2008.

[Kundra 2009]
Kundra, Vivek. Statement of Vivek Kundra, Federal Chief Information Officer, Administrator for
Electronic Government and Information Technology, Office of Management and Budget, Before
the Senate Committee Task Force on Government Performance. U.S. Senate Committee on the
Budget. 2009.

[Kundra 2010]
Kundra, Vivek. 25 Point Implementation Plan to Reform Federal Information Technology Man-
agement. The White House. December 9, 2010.

https://confluence.atlassian.com/jira064/displaying-a-dashboard-as-a-wallboard-720416968.html
https://confluence.atlassian.com/jira064/displaying-a-dashboard-as-a-wallboard-720416968.html
https://www.scrumalliance.org/community/articles/2014/september/has-scrum-killed-the-busi-ness-analyst
https://www.scrumalliance.org/community/articles/2014/september/has-scrum-killed-the-busi-ness-analyst
https://www.mountaingoatsoftware.com/blog/managing-risk-on-agile-projects-with-the-risk-burndown-chart
https://www.mountaingoatsoftware.com/blog/managing-risk-on-agile-projects-with-the-risk-burndown-chart

CMU/SEI-2018-SR-016 55
SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

[London 1988]
London, Manuel. Change Agents. Jossey-Bass Publishers. 1988. ISBN 1-55542-107-5.

[Manifesto 2001]
Manifesto for Agile Software Development. 2001. http://agilemanifesto.org

[NIST 2013]
National Institute of Standards and Technology Baldrige Performance Excellence Program. 2013–
2014 Criteria for Performance Excellence. NIST. 2013.

[RSC 1998]
Rational Software Corporation. Rational Unified Process: Best Practices for Software Develop-
ment Teams. White Paper TP026B Rev 11/01. RSC. 1998.

[Schwaber 2013]
Schwaber, Ken & Sutherland, Jeff. The Scrum Guide: The Definitive Guide to Scrum. Scrum Alli-
ance. July 2013. http://www.scrumguides.org/docs/scrumguide/v1/Scrum-Guide-
US.pdf#zoom=100

[Shore 2004]
Shore, Jim. Fail Fast. IEEE Software. Volume 21. Number 5. 2004. Pages 21–25.

http://agilemanifesto.org
http://www.scrumguides.org/docs/scrumguide/v1/Scrum-Guide-US.pdf#zoom=100
http://www.scrumguides.org/docs/scrumguide/v1/Scrum-Guide-US.pdf#zoom=100

CMU/SEI-2018-SR-016 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, search-
ing existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regard-
ing this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters
Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.
1. AGENCY USE ONLY

(Leave Blank)
2. REPORT DATE

May 2018
3. REPORT TYPE AND DATES

COVERED
Final

4. TITLE AND SUBTITLE
FedCLASS: A Case Study of Agile and Lean Practices in the Federal Government

5. FUNDING NUMBERS
FA8721-05-C-0003

6. AUTHOR(S)
Nanette Brown, Jeff Davenport, Linda Parker Gates, Jon Gross, and Tamara Marshall-Keim

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER
CMU/SEI-2018-SR-016

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
AFLCMC/PZE/Hanscom
Enterprise Acquisition Division
20 Schilling Circle
Building 1305
Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER
n/a

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT
Unclassified/Unlimited, DTIC, NTIS

12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)
This case study tells the story of the development of a critical IT system within an executive department of the U.S. federal government,
using iterative, Agile, and Lean development methods and cloud-based technologies. This study reports the successes and challenges
of using this new development approach in a government software development environment so that other government entities can ben-
efit from the experiences of this project. The study is based on conversations with team members, observations of team activities, and
examination of work products, documentation, and program guidance. The report describes the organizations responsible for creating
the software solution, establishing the development process, and structuring acquisition activities. It then details the product develop-
ment process in chronological order and describes the development approaches and technologies. It also puts events into the context of
external environmental influences to present a development effort as it confronts real-world challenges. The final section describes in-
sights gleaned during the research of this case study and includes analysis of the organization’s experiences with Agile and Lean adop-
tion, technical approaches, and project leadership. These insights may benefit future Agile projects in the federal government and the
software engineering community as a whole..

14. SUBJECT TERMS
Agile, case study, federal government, incremental development, Lean, software development

15. NUMBER OF PAGES
68

16. PRICE CODE

17. SECURITY CLASSIFICATION OF
REPORT
Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE
Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT
Unclassified

20. LIMITATION OF
ABSTRACT
UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18
298-102

	Acknowledgments
	Executive Summary
	Purpose of This Case Study
	The Business Need for a New Software System
	A New Approach to Software Development
	Implementation of Agile and Lean Principles of Development
	Integration with the Data Center
	Key Findings

	Abstract
	1 Introduction
	1.1 Purpose and Overview of This Case Study
	1.2 Organizations Involved in the Case Study
	1.2.1 The Software Engineering Institute
	1.2.2 Department Omega
	1.2.3 Program Alpha
	1.2.4 Service Providers
	1.2.5 The Development Team
	1.2.6 The Deployment Team
	1.2.7 Interrelationships

	2 Rationale for Change
	2.1 The Inadequacy of the Existing System
	2.2 Personnel Shortages
	2.3 Government Information Technology Reforms
	2.4 The FedCLASS Project
	2.4.1 Inadequacy of the Current System
	2.4.2 Personnel Shortages
	2.4.3 Government Information Technology Reforms

	3 Project Initiation
	3.1 Key Events in the Project Initiation Process
	3.1.1 Determining Software Requirements
	3.1.2 Assessing the Architecture
	Architecture Analysis 1
	Architecture Analysis 2

	3.1.3 Aligning the Development Effort with the Organization’s Strategic Plan
	3.1.4 Attempting to Reuse the Old System
	3.1.5 Planning for the Future
	3.1.6 Changing the Development Approach

	3.2 Adopting New Development Practices

	4 Establishing the Team
	4.1 Contracting for Technical Expertise
	4.2 Creating the Development Team
	4.2.1 Team Structure and Roles
	4.2.2 Project Sponsor
	4.2.3 Product Owner
	4.2.4 Project Manager
	4.2.5 Federal and State Agency Stakeholders
	4.2.6 Team Members

	4.3 Training the Development Team

	5 Project Implementation
	5.1 Starting with RUP
	5.1.1 Release 1: Inception Phase
	5.1.2 Release 1: Elaboration Phase

	5.2 Moving to Lean and Kanban
	5.2.1 Release 2: Developing Core Functionality
	5.2.2 Release 3: Developing Additional Core Functionality
	5.2.3 Release 4: Addressing Non-Core Functionality

	5.3 Deployment
	5.3.1 Experiences with Converting the Old Databases
	5.3.2 Integrating with the Data Center

	5.4 Estimating System Completion
	5.5 Changing Definitions of Success
	5.6 Preparing for Deployment
	5.7 Automated Delivery Pipeline and Continuous Integration
	5.8 Sustainment

	6 Project Analysis
	6.1 Analysis of Agile and Lean Adoption
	6.1.1 Requirements and Test
	6.1.2 Enhancing Collaboration
	6.1.3 The Contracting Environment
	6.1.4 Improving Estimation
	6.1.5 Metrics and Continuous Improvement

	6.2 Analysis of Technical Approaches
	6.2.1 Cloud Development
	6.2.2 Automation
	6.2.3 Layered Architecture
	6.2.4 Open Source Frameworks
	6.2.5 Data Conversion

	6.3 Analysis of Leadership
	6.3.1 Cultural Change
	6.3.2 The Agile Interface
	6.3.3 Risk Management

	7 Summary
	Appendix A Project Stakeholders
	Project Oversight
	Product Owner
	Governance
	Development Team
	Interfacing Systems
	Operational Data Center
	Operational Support

	Appendix B Project Timeline
	Appendix C Development Tools
	Appendix D Training for the Agile Development Team
	Appendix E Acronyms and Glossary
	Appendix F Key Project Documents
	References

